International Journal of Material Forming

, Volume 12, Issue 6, pp 995–1008 | Cite as

Two-way approach for deformation analysis of non-crimp fabrics in uniaxial bias extension tests based on pure and simple shear assumption

  • Jean Pourtier
  • Boris Duchamp
  • Maxime Kowalski
  • Peng WangEmail author
  • Xavier Legrand
  • Damien Soulat
Original Research


In-plane shear is considered as the main deformation mechanism during the forming of fabrics on double curved geometries. Non-Crimp Fabrics (NCFs) are more and more used in the industry thanks to their high mechanical performances. The uniaxial bias extension (UBE) test is commonly used for characterizing the in-plane shear behavior of fabrics. However, presence of slippages calls the reliability of this test into question for NCF material. These slippages lead to a macroscopic kinematic which does not respect the fundamental hypotheses of UBE test theory. The variety of NCF architectures is usually pointed while the lack of standardized experimental methods is seldom discussed. The first section of this paper presents a two-way approach to detect slippage on an NCF. This approach is based on two kinematical descriptions of the UBE test. The first one assumes a pure shear behavior whereas the second one assumes a simple shear behavior. These behaviors correspond respectively to the rotation of fibers and to the slippage of fibers from a macroscopic point of view. In the second section, the two-way approach is used to analyze experimental UBE tests. This investigation highlights the influence of the sample width on the deformation mode during a UBE test. More precisely, it is shown that increasing the sample width of NCF specimens improves the UBE test reliability.


Bias extension test Textile composite Non-crimp fabric Pure shear Simple shear Kinematic Experimental study 



The authors want to acknowledge the members of the Fast FORM project consortium (Arkema, Chomarat, Compose Group, Coriolis, ESI Group, Faurecia, Hexion, Hutchinson, Institut de Soudure Group, Innovation Plasturgie Composites, Owens Corning, Pinnette Emidecau Industries, PSA Group, Renault, Sise), the IRT M2P and the GEMTEX laboratory for their support.


This research received the funding from the PIA (Programme Investissements d’Avenir) and the industrial consortium (Arkema, Chomarat, Compose Group, Coriolis, ESI Group, Faurecia, Hexion, Hutchinson, Institut de Soudure, Innovation Plasturgie Composites, Owens Corning, Pinnette Emidecau Industries, PSA Group, Renault, SISE).

Compliance with ethical standards

Conflicts of interest

The authors declare no conflict of interest.


  1. 1.
    Lebrun G, Bureau MN, Denault J (2003) Evaluation of bias-extension and picture-frame test methods for the measurement of intraply shear properties of PP/glass commingled fabrics. Compos Struct 61(4):341–352CrossRefGoogle Scholar
  2. 2.
    Boisse P, Hamila N, Guzman-Maldonado E, Madeo A, Hivet G, Dell’Isola F (2017) The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review. Int J Mater Form 10(4):473CrossRefGoogle Scholar
  3. 3.
    De Luycker E (2009) Simulation et expérimentation en mise en forme de renforts composites 3D interlocks. Thèse, INSA, LyonGoogle Scholar
  4. 4.
    Bel S (2011) Analyse et simulation de la mise en forme des renforts de composites NCF. Thèse, INSA, LyonGoogle Scholar
  5. 5.
    Launay J, Hivet G, Duong AV, Boisse P (2008) Experimental analysis of the influence of tensions on in plane shear behaviour of woven composite reinforcements. Compos Sci Technol 68(2):506–515CrossRefGoogle Scholar
  6. 6.
    Ferretti M, Madeo A, Dell’Isola F, Boisse P (2014) Modeling the onset of shear boundary layers in fibrous composite reinforcements by second-gradient theory. Z Angew Math Phys 65(3):587–612MathSciNetCrossRefGoogle Scholar
  7. 7.
    Harrison P, Alvarez MF, Anderson D (2016) Towards comprehensive characterisation and modelling of the forming and Wrikling mechanics of engineering fabrics. Int J Solids Struct 154:2–18CrossRefGoogle Scholar
  8. 8.
    Harrison P (2016) Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos Part A Appl Sci Manuf 81:145–157CrossRefGoogle Scholar
  9. 9.
    Harrison P, Clifford MJ, Long AC (2004) Shear characterisation of viscous woven textile composites: a comparison between picture frame and bias extension experiments. Compos Sci Technol 64(10-11):1453–1465CrossRefGoogle Scholar
  10. 10.
    Harrison P, Taylor E, Alsayednoor J (2018) Improving the accuracy of the uniaxial bias extension test on engineering fabrics using a simple wrinkle mitigation technique. Compos Part A Appl Sci Manuf 108:53–61CrossRefGoogle Scholar
  11. 11.
    Harrison P, Tan MK, Long AC (2005) “Kinematics of intra-ply slip in textile composites during Bias extension tests,” In 8th ESAFORM confGoogle Scholar
  12. 12.
    Härtel F, Böhler P, Middendorf P (2014) An integral mesoscopic material characterization approach. Key Eng Mater 611–612:280–291CrossRefGoogle Scholar
  13. 13.
    P. Middendorf and C. Metzner, “Aerospace applications of non-crimp fabric composites,” in Non-crimp fabric composites: Manufacturing, properties and applications, S. V. Lomov, Ed. Woodhead Publishers, Cambridge 2011, pp. 441–448CrossRefGoogle Scholar
  14. 14.
    Bardl G, Nocke A, Cherif C, Pooch M, Schulze M, Heuer H, Schiller M, Kupke R, Klein M (2016) Automated detection of yarn orientation in 3D-draped carbon fiber fabrics and preforms from eddy current data. Compos Part B Eng 96(June):312–324CrossRefGoogle Scholar
  15. 15.
    Bardl G, Nocke A, Hübner M, Gereke T, Pooch M, Schulze M, Heuer H, Schiller M, Kupke R, Klein M, Cherif C (2018) Analysis of the 3D draping behavior of carbon fiber non-crimp fabrics with eddy current technique. Compos Part B Eng 132:49–60CrossRefGoogle Scholar
  16. 16.
    Krieger H, Gries T, Stapleton SE (2017) Shear and drape behavior of non-crimp fabrics based on stitching geometry. Int J Mater Form:1–13Google Scholar
  17. 17.
    Krieger H, Gries T, Stapleton SE (2017) Design of Tailored non-Crimp Fabrics Based on stitching geometry. Appl Compos MaterGoogle Scholar
  18. 18.
    Bel S, Hamila N, Boisse P, Dumont F (2012) Finite element model for NCF composite reinforcement preforming : importance of inter-ply sliding. Compos Part A Appl Sci Manuf 43(12):2269–2277CrossRefGoogle Scholar
  19. 19.
    Schirmaier FJ, Weidenmann A, Kärger L, Henning F (2016) Characterization of the draping behaviour of unidirectional non-crimp fabrics (UD-NCF). Compos Part A Appl Sci Manuf 80:28–38CrossRefGoogle Scholar
  20. 20.
    Böhler P, Härtel F, Middendorf P (2013) Identification of forming limits for unidirectional carbon textiles in reality and mesoscopic simulation. Key Eng Mater 554–557:423–432CrossRefGoogle Scholar
  21. 21.
    Mallach A, Härtel F, Heieck F, Fuhr J-P, Middendorf P, Gude M (2016) Experimental comparison of a macroscopic draping simulation for dry non-crimp fabric preforming on a complex geometry by means of optical measurement. J Compos Mater:1–13Google Scholar
  22. 22.
    Chen S, Endruweit A, Harper LT, Warrior NA (2015) Inter-ply stitching optimisation of highly drapeable multi-ply preforms. Compos Part A Appl Sci Manuf 71:144–156CrossRefGoogle Scholar
  23. 23.
    Deghboudj S, Satha H (2014) Determination of the in-plane shear rigidity modulus of a carbon non-crimp fabric from bias-extension data test. J Compos Mater 48(22):2729–2736CrossRefGoogle Scholar
  24. 24.
    Colin D, Bel S, Hans T, Hartmann M (2018) “On the inter-stitch interaction in biaxial non-crimp fabrics,” In Esaform 2018Google Scholar
  25. 25.
    Chen S, McGregor OPL, Harper LT, Endruweit A, Warrior NA (2016) Defect formation during preforming of a bi-axial non-crimp fabric with a pillar stitch pattern. Compos Part A Appl Sci Manuf 91:156–167CrossRefGoogle Scholar
  26. 26.
    Deghboudj S, Boukhedena W, Satha H (2018) Experimental and finite element analysis of in-plane shear properties of a carbon non-crimp fabrics at macroscopic scale. J Compos Mater 52(2):235–244CrossRefGoogle Scholar
  27. 27.
    Lomov SV, Barburski M, Stoilova T, Verpoest I, Akkerman R, Loendersloot R, Thije RHW (2005) Carbon composites based on multiaxial multiply stitched preforms. Part 3: biaxial tension, picture frame and compression tests of the preforms. Compos Part A Appl Sci Manuf 36(9):1188–1206CrossRefGoogle Scholar
  28. 28.
    Creech G (2006) “Mesoscopic finite element modelling of non-crimp fabrics for drape and failure analyses,” Thèse, Cranfield UniversityGoogle Scholar
  29. 29.
    Creech G, Pickett AK (2006) Meso-modelling of non-crimp fabric composites for coupled drape and failure analysis. J Mater Sci 41(20):6725–6736CrossRefGoogle Scholar
  30. 30.
    Bel S, Hamila N, Boisse P (2011) “Characterisation of non-crimp fabric deformation mechanisms during preforming,” In 18th international conference on composite materialsGoogle Scholar
  31. 31.
    Härtel F, Harrison P (2014) Evaluation of normalisation methods for uniaxial Bias extension tests on engineering fabrics. Compos Part A Appl Sci Manuf 37:61–69CrossRefGoogle Scholar
  32. 32.
    Bel S, Boisse P, Dumont F (2012) Analyses of the deformation mechanisms of non-crimp fabric composite reinforcements during preforming. Appl Compos Mater 19(3–4):513–528CrossRefGoogle Scholar
  33. 33.
    Pourtier J, Duchamp B, Kowalski M, Legrand X, Wang P, Soulat D (2018) “Analysis of defaults occured during bias extension tests on non-crimp fabrics,” In ECCM-18, no. June, pp. 1–7Google Scholar
  34. 34.
    Harrison P, Yu W-R, Long AC (2011) “Modelling the deformability of biaxial non-crimp fabric composites,” In Non-crimp fabric composites : Manufacturing, properties and applications, S. V. Lomov, Ed. Woodhead Publishers, pp. 161–182Google Scholar
  35. 35.
    Schirmaier FJ, Dörr D, Henning F, Kärger L (2017) A macroscopic approach to simulate the forming behaviour of stitched unidirectional non-crimp fabrics (UD-NCF). Compos Part A Appl Sci Manuf 102:322–335CrossRefGoogle Scholar
  36. 36.
    Leutz D (2015) “Forming simulation of AFP materials layups material characterization simulation and validation,” Thèse, Technische Universität MünchenGoogle Scholar
  37. 37.
    Moreira DC, Nunes LCS (2013) Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym Test 32(2):240–248CrossRefGoogle Scholar
  38. 38.
    J. Cao et al. (2004) “A cooperative benchmark effort on testing of woven composites,” in In proceedings of the 7th ESAFORM conference on material forming, pp. 305–308Google Scholar
  39. 39.
    Zhao X, Liu G, Gong M, Song J, Zhao Y, Du S (2018) Effect of tackification on in-plane shear behaviours of biaxial woven fabrics in bias extension test: experiments and finite element modeling. Compos Sci Technol 159:33–41CrossRefGoogle Scholar
  40. 40.
    Pourtier J, Duchamp B, Kowalski M, Legrand X, Wang P, Soulat D (2018) Bias extension test on a bi-axial non-crimp fabric powdered with a non-reactive binder system. AIP Conf Proc 1960:8–11Google Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRT M2PMetzFrance
  2. 2.ENSAIT, GemtexUniversity of LilleRoubaixFrance

Personalised recommendations