Advertisement

Development of a three-dimensional finite element method simulation model to predict modified flow drilling tool performance

  • Ekrem OezkayaEmail author
  • Stefan Hannich
  • Dirk Biermann
Original Research

Abstract

Flow drilling is a relatively unexplored manufacturing process in which the tool penetrates the workpiece with a defined force or defined feed along its rotational axis. This paper presents a developed three-dimensional (3D)-finite element method (FEM) simulation model to predict the performance of modified flow drilling tools. To validate the simulation model, the flow drilling of AlSi10Mg with a non-pre-heated (Tinitial = 20 °C) and pre-heated (Tinfluenced = 200 °C) tool was investigated. Thereby, the comparison of measured and simulated values of temperature, force and torques showed a good agreement. The comparison of the forces and torques concluded in almost identical maximum values. Nevertheless, the pre-heated tool was found to have a significantly more continuous heat distribution and higher bore quality than non-pre-heated flow drills, which can be attributed to the better formability of the cast aluminum alloy at elevated temperatures. Since the results of the simulation showed a good agreement with the experimental values, the three-dimensional model was used to predict the process behavior of a modified flow drilling tool, which could contribute to the optimization of the process. The result show, that the process time could be reduced by half, while the occurring temperatures, forces and torques remained acceptable.

Keywords

Finite element method Flow drilling Heat exchange 3D modeling 3D FEM flow drilling simulation 

Nomenclature

A

Initial yield N/mm2

B

Hardening modulus

Cs

Strain rate sensitivity

c

Specific heat, J/(kg∙K)

D

Cumulative-damage fracture factor

d1…d5

Damage constants

dFD

Tool diameter, mm

d2

Shrank diameter, mm

F

Force, N

hCy

Cylindrical height, mm

hCo

Conical height, mm

hT

Tip/center height, mm

k

Heat conductivity, W/(m∙K)

l

Length, mm

lt

Drilling depth (simulation), mm

Mt

Torque, Nm

m

Thermal softening effect

n

Rotational speed, 1/min

Rz

Average surface roughness

t

Time, s

T

Homogenous temperature, K

Tf

Friction moment, K

th

Thick, mm

Tinfluenced

Influenced temperature, °C

Tinitial

Initial temperature, °C

Tm

Melting temperature, K

Tr

Transition temperature, K

vc

Peripheral speed

vf

Feed speed, mm/min

w

Wide, mm

\( {\dot{q}}_f \)

Heat generation, m/s

Greek symbols

αFD

Tip/center angle, degree

εm

Emission rate

εplastic

Plastic strain

βFD

Conical angle, degree

\( \dot{\varepsilon} \)

Strain rate, 1/s

\( \dot{\varepsilon_0} \)

Reference strain rate, 1/s

εf

Equivalent strain to fracture, 1/s

\( {\dot{\varepsilon}}_{pl} \)

Comparative strain rate, 1/s

η

Hardening exponent

σ

Flow stress, N/mm2

ρ

Density, N/m2

ρh

Hydrostatic pressure, hPa

ω

Angular velocity, rad∙s−1

Abbreviations

Al

Aluminum alloy

approx.

Approximate

Bal.

Balance

Cu

Copper

DIN

German institute for standardization

3D

Three-dimensional

EN

European standards

FEM

Finite element method

FE

Finite element

Fe

Iron

Mg

Magnesium

Mn

Manganese

Ni

Nickel

Pb

Lead

Si

Silicon

Sn

Tin

Ti

Titanium

WC

Tungsten carbide

x, y, z

Cartesian coordinates

Zn

Zinc

Notes

Acknowledgements

The authors gratefully acknowledge funding from the German Research Foundation (DFG) for the research project “Holistic development and characterization of an efficient manufacturing of detachable joints for aluminum and magnesium lightweight materials” (BI498/57).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Eliseev AA, Fortuna SV, Kolubaev EA, Kalashnikova TA (2017) Microstructure modification of 2024 aluminum alloy produced by friction drilling. Mater Sci Eng 691:121–125.  https://doi.org/10.1016/j.msea.2017.03.040 CrossRefGoogle Scholar
  2. 2.
    Bilgin MB, Gök K, Gök A (2015) Three-dimensional finite element model of friction drilling process in hot forming processes. P I Mech Eng B-J Pro 231(3):548–554.  https://doi.org/10.1177/0954408915614300
  3. 3.
    Engbert T, Heymann T, Biermann D, Zabel A (2011) Flow drilling and thread forming of continuously reinforced aluminium extrusions. P I Mech Eng E-J Eng 225:398–407Google Scholar
  4. 4.
    Ramsay JMG (2008) Fliesslochformen und Gewindefurchen in dünne Bleche und Rohre aus Kupfer und Kupferlegierungen. Inauguraldissertation, Universität KasselGoogle Scholar
  5. 5.
    Gopal Krishna PV, Kishore K, Satyanarayana V (2010) Some investigations in friction drilling AA6351 using high speed steel tools. ARPN. J Eng Appl Sci 5:11–15Google Scholar
  6. 6.
    Prabhu T, Arulmurugu A (2014) Experimental an analysis of friction drilling on Aluminium and copper. IJMET 5:130–139Google Scholar
  7. 7.
    Ozek C, Demir Z (2013) Investigate the friction drilling of aluminium alloys according to the thermal conductivity. Tem J 2:93–101Google Scholar
  8. 8.
    Miller SF, Blau PJ, Shih AJ (2005) Microstructural alterations associated with friction drilling of steel, aluminum, and titanium. J Mater Eng Perform 14(5):647–653.  https://doi.org/10.1361/105994905X64558 CrossRefGoogle Scholar
  9. 9.
    Boopathi M, Shankar S, Manikandakumar S, Ramesh R (2013) Experimental investigation of friction drilling on brass, aluminium and stainless steel. Process Eng 64:1219–1226.  https://doi.org/10.1016/j.proeng.2013.09.201
  10. 10.
    Gopichand A, Brahmam MV, Bhanuprakash D (2014) Experimental investigations and multi-objective optimization of friction drilling process on AISI 1015. IJAER 3Google Scholar
  11. 11.
    Nagarajan HN, Kotrappa H, Mallanna C, Venkatesh VC (1981) Mechanics of flow forming. CIRP Ann Manuf Technol 30(1):159–162.  https://doi.org/10.1016/S0007-8506(07)60915-9 CrossRefGoogle Scholar
  12. 12.
    Hirsch J (2011) Aluminium in innovative light-weight car design. Mater Trans 52(5):818–824.  https://doi.org/10.2320/matertrans.L-MZ201132 CrossRefGoogle Scholar
  13. 13.
    Wittke P, Cyclic WF (2016) Deformation behavior of friction drilled internal threads in AlSi10Mg and AZ31 profiles. Procedia Struct. Integrity 2:3264–3271.  https://doi.org/10.1016/j.prostr.2016.06.407
  14. 14.
    Krauß M (2007) Zur thermischen Ermüdung der Magnesiumbasislegierungen AZ31 und AZ91. Dissertation, University KasselGoogle Scholar
  15. 15.
    Oezkaya E (2016) FEM-basiertes Softwaresystem für die effiziente 3D-Gewindebohrsimulation und Werkzeugoptimierung mittels CFD-Simulation. Vulkan, EssenGoogle Scholar
  16. 16.
    Ucun İ, Aslantas K, Oezkaya E, Cicek A (2017) 3D numerical modelling of micro-milling process of Ti6Al4V alloy and experimental validation. Int J Adv Manuf Tech 3(3):250–260.  https://doi.org/10.1080/2374068X.2016.1247343
  17. 17.
    Zabel A (2016) Prozesssimulation in der Zerspanung – Modellierung von Dreh- und Fräsprozessen. Vulkan, EssenGoogle Scholar
  18. 18.
    Dehghan S, Ismail MIS, Ariffin MKA, Baharudin BT, Sulaiman S (2017) Numerical simulation on friction drilling of aluminum alloy. Mater Werkst 48(3-4):241–248.  https://doi.org/10.1002/mawe.201600768 CrossRefGoogle Scholar
  19. 19.
    Danish M, Ginta TL, Wahjoedi BA (2016) Enhanced functional properties of mg alloys by cryogenic machining. IJAER I 11:5055–5059Google Scholar
  20. 20.
    Hutchinsona B, Barnett MR, Ghaderi A, Cizek P, Sabirov I (2009) Deformation modes and anisotropy in magnesium alloy AZ31. Int J Mater Res 100(4):556–563CrossRefGoogle Scholar
  21. 21.
    Ostermann F (2014) Anwendungstechnologie Aluminium. Springer, Berlin HeidelbergGoogle Scholar

Copyright information

© Springer-Verlag France SAS, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Machining TechnologyTechnical University of DortmundDortmundGermany

Personalised recommendations