Advertisement

International Journal of Material Forming

, Volume 9, Issue 2, pp 203–213 | Cite as

Surface roughening of an aluminum 6016 alloy during bending and hemming

  • Mathias Liewald
  • Severin HönleEmail author
  • Manfred Sindel
Original Research

Abstract

Hang-on parts of modern passenger cars such as doors and hoods are mainly manufactured by a two-step hemming process during assembly, whereby the edge of the already deep-drawn, blanked and flanged outer panel is further bent to a hem. This hem ties together outer and inner panel of hang-on part. Owing to the bending processes during hemming, large amounts of strain occur on the outer side of the hemming rope, causing local roughening of the formed sheet surface, which may become critical in terms of the quality of the coated component. In this study, the surface roughening during bending and hemming of a typical aluminum sheet material for hang-on parts is examined. In a first step, the roughening process is determined as a function of the bending angle and plastic strain during bending and hemming. Then hemming was further investigated to describe surface roughening as a function of the flanging radius and pre-strain level. The results of the plate bending test and hemming test at identical bending angles and plastic strain levels showed different levels of surface roughening, caused by the non-congruent size and local position of the forming zone in both bending methods.

Keywords

Aluminum Bending Hemming Surface Roughness 

References

  1. 1.
    Koch U, Gusinde A, Huppert-Schemme G, Hirsch J, Hornbogen E (1997) Karosseriebänder aus AlMgSi-Legierungen - Einfluß der Lösungsglühung auf die mechanischen Eigenschaften bei der großtechnischen Fertigung. Werkstoffwoche ‘96 - Werkstoffe für die VerkehrstechnikGoogle Scholar
  2. 2.
    Mattei L, Daniel D, Guiglionda G, Klöcker H, Driver J (2013) Strain localization and damage mechanisms during bending of AA6016 sheet. Mater Sci Eng A 559:812–821. doi: 10.1016/j.msea.2012.09.028 CrossRefGoogle Scholar
  3. 3.
    Lahaye C, Bottema J, De Smet P, Heyvaert S (2000) Aluminium alloy selection for closures with respect to functional demands. SAE Tech Pap. doi: 10.4271/2000-01-2696 Google Scholar
  4. 4.
    Daniel D, Shahani R, Baldo R, Hoffmann J (2000) Development of 6xxx alloy aluminum sheet for autobody outer panels: bake hardening, formability and trimming performance. SAE Tech Pap. doi: 10.4271/1999-01-3195 Google Scholar
  5. 5.
    Lahaye C, Bottema J, De Smet P, Jonason P et al (1999) Improved AA5182 aluminium alloy as a preferred choice for critical forming operations. SAE Tech Pap. doi: 10.4271/1999-01-3173 Google Scholar
  6. 6.
    Sachtleber M, Raabe D, Weiland H (2004) Surface roughening and color changes of coated aluminum sheets during plastic straining. J Mater Process Technol 148:68–76. doi: 10.1016/j.jmatprotec.2004.01.041 CrossRefGoogle Scholar
  7. 7.
    Hou Y, Yu Z, Zhang W, Jiang H, Lin Z (2009) Surface topography evolvement of galvanized steels in sheet metal forming. Trans Nonferrous Metals Soc China 19:305–310. doi: 10.1016/S1003-6326(08)60269-1 CrossRefGoogle Scholar
  8. 8.
    Mahmudi R, Mehdizadeh M (1999) Surface roughening during uniaxial and equi-biaxial stretching of 70–30 brass sheets. J Mater Process Technol 80–81:707–712. doi: 10.1016/S0924-0136(98)00099-5 Google Scholar
  9. 9.
    Raabe D, Sachtleber M, Weiland H, Scheele G, Zhao Z (2003) Grain-scale micromechanics of polycrystal surfaces during plastic straining. Acta Mater 51:1539–1560. doi: 10.1016/S1359-6454(02)00557-8 CrossRefGoogle Scholar
  10. 10.
    Stoudt MR, Hubbard JB, Leigh SD (2011) On the relationship between deformation-induced surface roughness and plastic strain in AA5052—is it really linear? Metall Mater Trans A 42:2668–2679. doi: 10.1007/s11661-011-0694-z CrossRefGoogle Scholar
  11. 11.
    Lucachick G, Sanchez L (2013) Surface topography changes in aluminum alloy sheet during large plastic straining under cyclic pure bending. J Mater Process Technol 213:300–307. doi: 10.1016/j.jmatprotec.2012.09.011 CrossRefGoogle Scholar
  12. 12.
    Ogórek A, Stachowicz F (2005) Determination of forming limits of thin aluminium sheets. Scientific bulletin series C: fascicle mechanics, tribology, machine manufacturing technologyGoogle Scholar
  13. 13.
    Roters F, Raabe D, Weiland H (2006) Roughening of coated aluminium sheets during plastic straining. Mater Sci Forum 519–521:711–716. doi: 10.4028/www.scientific.net/MSF. 519-521.711 CrossRefGoogle Scholar
  14. 14.
    Becker R (1998) Effects of strain localization on surface roughening during sheet forming. Acta Mater 46:1385–1401. doi: 10.1016/S1359-6454(97)00182-1 CrossRefGoogle Scholar
  15. 15.
    Wilson DV, Roberts WT, Rodrigues PMB (1981) Effects of grain anisotropy on limit strains in biaxial stretching: part ii. Sheets of cubic metals and alloys with well-developed preferred orientations. Metall Mater Trans A 12:1603–1611CrossRefGoogle Scholar
  16. 16.
    Mizuno T, Mulki H (1996) Changes in surface texture of zinc-coated steel sheets under plastic deformation. Wear 198:176–184. doi: 10.1016/0043-1648(96)06963-3 CrossRefGoogle Scholar
  17. 17.
    Scheele G (2004) Untersuchung des Aufrauungsverhaltens von Reinaluminium bei Walz- und Zugverformung. Dissertation, AachenGoogle Scholar
  18. 18.
    Stoudt MR, Hubbard JB, Iadicola MA, Banovic SW (2008) A study of the fundamental relationships between deformation-induced surface roughness and strain localization in AA5754. Metall Mater Trans 40:1611–1622. doi: 10.1007/s11661-009-9881-6 CrossRefGoogle Scholar
  19. 19.
    Dautzenberg J, Kals J (1985) Surface roughness caused by metal forming. Ann CIRP-Manuf Technol 34:477–479. doi: 10.1016/S0007-8506(07)61815-0 CrossRefGoogle Scholar
  20. 20.
    Sarkar J, Kutty TRG, Wilkinson DS, Embury JD, Lloyd DJ (2004) Tensile properties and bendability of T4 treated AA6111 aluminum alloys. Mater Sci Eng A 369:258–266. doi: 10.1016/j.msea.2003.11.022 CrossRefGoogle Scholar
  21. 21.
    Radhakrishnan V (2003) Effect of stylus radius on the roughness values measured with tracing stylus instruments. Wear 16:325–335. doi: 10.1016/0043-1648(70)90099-2 CrossRefGoogle Scholar
  22. 22.
    Debuire F, Zwilling V (2002) Experimental and numerical approaches of hemming: application on steel and aluminum 6016. SAE Tech Pap. doi: 10.4271/2002-01-2084 Google Scholar
  23. 23.
    Liewald M, Wagner S (2012) Current Research Work into Sheet Metal Forming at the Institute for Metal Forming Technology (IFU) at the University of Stuttgart. In: Liewald M (ed) International Conference New Developments in Sheet Metal Forming, Conference Proceeding, MAT INFO Werkstoff-Informationsgesellschaft mbH, FrankfurtGoogle Scholar
  24. 24.
    Hönle S, Liewald M (2013) Prozesssichere Gestaltung von Maschinenfalzprozessen unter Berücksichtigung der Werkstoffbeanspruchung von Karosseriekomponenten aus Blech. In: Brosius A (ed) Sächsische Fachtagung Umformtechnik SFU, Conference Proceeding, DresdenGoogle Scholar
  25. 25.
    Le Maout N, Thullier S, Manach PY (2010) Classical and roll-hemming process of Pre-strained metallic sheets. Exp Mech 50:1087–1097. doi: 10.1007/s11340-009-9297-7 CrossRefGoogle Scholar
  26. 26.
    Le Maout N, Thullier S, Manach PY (2009) Aluminum alloy damage evolution for different strain paths—application to hemming process. Eng Fract Mech 76:1202–1214. doi: 10.1016/j.engfracmech.2009.01.018 CrossRefGoogle Scholar
  27. 27.
    DIN EN ISO 6892–1 (2014) Metallic materials - Tensile testing - Part 1: Method of test at room temperatureGoogle Scholar
  28. 28.
    DIN EN ISO 4287 (2010) Geometrical Product Specifications (GPS) - Surface texture: Profile method - Terms, definitions and surface texture parametersGoogle Scholar
  29. 29.
    DIN EN ISO 7438 (2012) Metallic materials - Bend testGoogle Scholar
  30. 30.
    Liewald M, Hönle S, Sindel M (2013) Untersuchung des Kraft- und Energiebedarfs beim Falzen von Aluminiumblechwerkstoffen. UTFscience 4/2013Google Scholar
  31. 31.
    Denninger R (2014) Beitrag zur Prozessabsicherung beim Einsatz von Aluminiumblechwerkstoffen für Fahrzeugkarosserien. Dissertation, StuttgartGoogle Scholar
  32. 32.
    Hönle S, Liewald M (2014) Experimental investigation of energy savings during table-top hemming of aluminum alloys. Key Eng Mater 611–612:947–954. doi: 10.4028/www.scientific.net/KEM. 611-612.947 CrossRefGoogle Scholar
  33. 33.
    Mishra A, Thuillier S (2014) Investigation of the rupture in tension and bending of DP980 steel sheet. Int J Mech Sci 84:171–181. doi: 10.1016/j.ijmecsci.2014.04.023 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2015

Authors and Affiliations

  • Mathias Liewald
    • 1
  • Severin Hönle
    • 1
    Email author
  • Manfred Sindel
    • 2
  1. 1.Institute for Metal Forming TechnologyUniversity of StuttgartStuttgartGermany
  2. 2.AUDI AGQuality AssuranceNeckarsulmGermany

Personalised recommendations