International Journal of Material Forming

, Volume 8, Issue 4, pp 591–599 | Cite as

A FEM-DBEM investigation of the influence of process parameters on crack growth in aluminum friction stir welded butt joints

  • Pierpaolo Carlone
  • Roberto CitarellaEmail author
  • Marcello Lepore
  • Gaetano S. Palazzo
Thematic Issue: Advanced Modeling and Innovative Processes


This paper deals with a numerical investigation on the influence of FSW process parameters on fatigue crack growth in AA2024-T3 butt joints. The computational approach is based on the sequential usage of Finite Element Method (FEM) and Dual Boundary Element Method (DBEM). The distribution of the process induced residual stresses has been mapped by means of the contour method. The residual stress field has then been superimposed in a DBEM environment to the stress field induced by a remote fatigue traction load. A two-parameter crack growth law has been used for the crack propagation rate assessment. The simulation results corresponding to different combinations of process parameters are presented. The influence of process parameters on the residual stress distribution has also been highlighted.


Friction stir welding Crack growth Residual stress Process parameters FEM-DBEM 


  1. 1.
    Schmidt HNB, Dickerson TL, Hattel JH (2006) Material flow in butt friction stir welds in AA2024-T3. Acta Mater 54:1199–1209CrossRefGoogle Scholar
  2. 2.
    Sutton MA, Yang B, Reynolds AP, Taylor R (2002) Microstructural studies of friction stir welds in 2024-T3 aluminum. Mater Sci Eng A-Struct 323:160–166CrossRefGoogle Scholar
  3. 3.
    Yang B, Yan J, Sutton MA, Reynolds AP (2004) Banded microstructure in AA2024-T351 and AA2524-T351 aluminum friction stir welds Part I. Metallurgical studies. Mat Sci Eng A-Struct 364:55–65CrossRefGoogle Scholar
  4. 4.
    Khodir SA, Shibayanagi T (2008) Friction stir welding of dissimilar AA2024 and AA7075 aluminum alloys. Mat Sci Eng B-Adv 148:82–87CrossRefGoogle Scholar
  5. 5.
    Carlone P, Palazzo GS (2013) Longitudinal residual stress analysis in AA2024-T3 friction stir welding. The Open Mech Eng J 7:18–26CrossRefGoogle Scholar
  6. 6.
    Liu HJ, Fujii H, Maeda M, Nogi K (2003) Tensile properties and fracture locations of friction-stir-welded joints of 2017-T351 aluminum alloy. J Mater Process Tech 142:692–696CrossRefGoogle Scholar
  7. 7.
    Su J-Q, Nelson TW, Mishra R, Mahoney M (2003) Microstructural investigation of friction stir welded 7050-T651 aluminium. Acta Mater 51:713–729CrossRefGoogle Scholar
  8. 8.
    Paulo RMF, Carlone P, Valente RAF, Teixeira-Dias F, Palazzo GS (2014) Influence of friction stir welding residual stresses on the compressive strength of aluminium alloy plates, thin wall. Struct 74:184–190Google Scholar
  9. 9.
    Moreira PMGP, de Jesus AMP, Ribeiro AS, de Castro PMST (2008) Fatigue crack growth in friction stir welds of 6082-T6 and 6061-T6 aluminium alloys: a comparison. Theor Appl Fract Mec 50:81–91CrossRefGoogle Scholar
  10. 10.
    Moreira PMGP, de Oliveira FMF, de Castro PMST (2008) Fatigue behavior of notched specimens of friction stir welded aluminium alloy 6063-T6. J Mater Process Tech 207:283–292CrossRefGoogle Scholar
  11. 11.
    Kainuma S, Katsuki H, Iwai I, Kumagai M (2008) Evaluation of fatigue strength of friction stir butt-welded aluminum alloy joints inclined to applied cyclic stress. Int J Fatigue 30:870–876CrossRefGoogle Scholar
  12. 12.
    Hatamleh O (2009) A comprehensive investigation on the effects of laser and shot peening on fatigue crack growth in friction stir welded AA 2195 joints. Int J Fatigue 31:974–988CrossRefGoogle Scholar
  13. 13.
    Uyyuru RK, Kailas SV (2006) Numerical analysis of friction stir welding process. J Mater Eng Perform 15:505–518CrossRefGoogle Scholar
  14. 14.
    Schmidt H, Hattel J (2005) A local model for the thermomechanical conditions in friction stir welding. Model Simul Mater Sc 13:77–93CrossRefGoogle Scholar
  15. 15.
    Carlone P, Citarella R, Lepore M, Palazzo GS (2012) Numerical Crack Growth Analysis in AA2024-T3 Friction Stir Welded Butt Joints, Proceedings of The Eighth International Conference on Engineering Computational Technology, Dubrovnik–Croatia, p 4–7Google Scholar
  16. 16.
    Lombard H, Hattingh DG, Steuwer A, James MN (2009) Effect of process parameters on the residual stresses in AA5083-H321 friction stir welds. Mat Sci and Eng A-Struct 501:119–124CrossRefGoogle Scholar
  17. 17.
    Deplus K, Simar A, Van Haver W, de Meester B (2011) Residual stresses in aluminium alloy friction stir welds. Int J Adv Manuf Tech 56:493–504CrossRefGoogle Scholar
  18. 18.
    Milan MT, Bose Filho WW, Tarpani JR, Malafaia AMS, Silva CPO, Pellizer BC, Pereira LE (2007) Residual stress evaluation of AA2024-T3 friction stir welded joints. J Mater Eng Perform 16:86–92CrossRefGoogle Scholar
  19. 19.
    Peel M, Stewer A, Preuss M, Withers PJ (2003) Microstructure, mechanical properties and residual stress as a function of welding speed in aluminium AA5083 friction stir welds. Acta Mater 51:4791–4801CrossRefGoogle Scholar
  20. 20.
    Citarella R, Lepore M, Fellinger J, Bykov V, Schauer F (2013) Coupled FEM-DBEM method to assess crack growth in magnet system of Wendelstein 7-X. Frattura ed Integrità Strutturale 26:92–103Google Scholar
  21. 21.
    Citarella R, Cricrì G, Lepore M, Perrella M (2014) Thermo-mechanical crack propagation in aircraft engine vane by coupled FEM-DBEM approach. Adv Eng Softw 67:57–69CrossRefGoogle Scholar
  22. 22.
    Citarella R, Cricrì G, Lepore M, Perrella M (2014) Assessment of crack growth from a cold worked hole by coupled FEM-DBEM approach. Key Eng Mater 577–578:669–672Google Scholar
  23. 23.
    Citarella R, Cricrì G (2009) A two-parameter model for crack growth simulation by combined FEM-DBEM approach. Adv EngSoftw 40:363–377zbMATHGoogle Scholar
  24. 24.
    Prime MB (2001) Cross-sectional mapping of residual stresses by measuring the surface contour after a cut. J Eng Mater-T 123:162–168CrossRefGoogle Scholar
  25. 25.
    Sadananda K, Vasudevan AK (1997) Short crack growth and internal stresses. Int J Fatigue 19:99–108CrossRefGoogle Scholar
  26. 26.
    Carlone P, Palazzo GS (2013) Influence of process parameters on microstructure and mechanical properties in AA2024-T3 friction stir welding. Metallography Microstruc Anal 2:213–222CrossRefGoogle Scholar
  27. 27.
    Bueckner HF (1958) The propagation of cracks and the energy of elastic deformations. Trans of the ASME 80:1225–1230Google Scholar
  28. 28.
    Citarella R, Carlone P, Lepore M, Palazzo GS (2014) Numerical-Experimental Crack Growth Analysis in AA2024-T3 FSWed Butt Joints, Computer and StructureGoogle Scholar
  29. 29.
    Citarella R, Cricrì G, Armentani E (2013) Multiple crack propagation with dual boundary element method in stiffened and reinforced full scale aeronautic panels. Key Eng Mater 560:129–155CrossRefGoogle Scholar
  30. 30.
    Citarella R, Cricrì G (2010) Comparison of DBEM and FEM crack path predictions in a notched shaft under torsion. Eng Fract Mech 77:1730–1749CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2014

Authors and Affiliations

  • Pierpaolo Carlone
    • 1
  • Roberto Citarella
    • 1
    Email author
  • Marcello Lepore
    • 1
  • Gaetano S. Palazzo
    • 1
  1. 1.Department of Industrial EngineeringUniversity of SalernoFiscianoItaly

Personalised recommendations