International Journal of Material Forming

, Volume 8, Issue 2, pp 167–181 | Cite as

Material flow visualization in Friction Stir Welding via particle tracing

  • N. DialamiEmail author
  • M. Chiumenti
  • M. Cervera
  • C. Agelet de Saracibar
  • J. P. Ponthot
Original Research


This work deals with the modeling of the material flow in Friction Stir Welding (FSW) processes using particle tracing method. For the computation of particle trajectories, three accurate and computationally efficient integration methods are implemented within a FE model for FSW process: the Backward Euler with Sub-stepping (BES), the 4-th order Runge–Kutta (RK4) and the Back and Forth Error Compensation and Correction (BFECC) methods. Firstly, their performance is compared by solving the Zalesak’s disk benchmark. Later, the developed methodology is applied to some FSW problems providing a quantitative 2D and 3D view of the material transport in the process area. The material flow pattern is compared to the experimental evidence.


Friction Stir Welding Material flow Particle tracing BES BFECC RK4 



This work was supported by the European Research Council under the Advanced Grant: ERC-2009-AdG “Real Time Computational Mechanics Techniques for Multi-Fluid Problems”. The authors are also thankful for the financial support of the Spanish Ministerio de Educación y Ciencia (PROFIT programme) within the project CIT-020400–2007-82.


  1. 1.
    Thomas WM, Nicholas ED, Needham JC, Murch MG, Temple-Smith P, Dawes CJ (1991) Friction-stir butt welding. GB Patent No. 9125978.8, International Patent No. PCT/GB92/02203Google Scholar
  2. 2.
    Mishra RS, Ma ZY (2005) Friction Stir Welding and processing. Mater Sci Eng R 50:1–78CrossRefzbMATHGoogle Scholar
  3. 3.
    London B, Mahoney M, Bingel B, Calabrese R, Waldron D (2001) Experimental methods for determining material flow in friction stir welds. The third International symposium on Friction Stir Welding, Kobe, Japan, 27–28 SeptemberGoogle Scholar
  4. 4.
    Reynolds AP (2008) Flow visualization and simulation in FSW. Scr Mater 58:338–342CrossRefGoogle Scholar
  5. 5.
    Seidel TU, Reynolds AP (2001) Visualization of the material flow in AA2195 Friction Stir Welds using a marker insert technique. Metall Mater Trans A32:2879–2884CrossRefGoogle Scholar
  6. 6.
    Colligan K (1999) Material flow behaviour during Friction Stir Welding of aluminium. Weld J 78:229–237Google Scholar
  7. 7.
    Guerra M, Schmids C, McClure JC, Murr LE, Nunes AC (2003) Flow patterns during Friction Stir Welding. Mater Charact 49:95–101CrossRefGoogle Scholar
  8. 8.
    Dickerson T, Shercliff HR, Schmidt H (2003) A weld marker technique for flow visualization in Friction Stir Welding. 4th International Symposium on Friction Stir Welding, Park City, Utah, USA, 14–16 MayGoogle Scholar
  9. 9.
    Kallgren T, Jin L-Z, Sandstrom R (2008) Material flow during Friction Stir Welding of copper. 7th International Friction Stir Welding symposium, Awaji Island, Japan, 20–22 MayGoogle Scholar
  10. 10.
    Johnson R, Threadgill P (2003) Friction Stir Welding of magnesium alloys. Magnes TechnolGoogle Scholar
  11. 11.
    Ouyang J, Yarrapareddy E, Kovacevic R (2006) Microstructural evolution in the friction stir welded 6061 aluminum alloy (T6-temper condition) to copper. J Mater Process Technol 172:110–122CrossRefGoogle Scholar
  12. 12.
    Abdollah-Zadeh A, Saeid T, Sazgari B (2008) Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints. J Alloys Comp 460:535–538CrossRefGoogle Scholar
  13. 13.
    Buffa G, Fratini L, Micari F, Shivpuri R (2008) Material flow in FSW of T-joints: experimental and numerical analysis. Int J Metal Form 1(1):1283–1286CrossRefGoogle Scholar
  14. 14.
    Buffa G, Ducato A, Fratini L (2011) Numerical procedure for residual stresses prediction in Friction Stir Welding. Finite Elem Anal Des 47(4):470–476CrossRefGoogle Scholar
  15. 15.
    Alfaro I, Racineux G, Poitou A, Cueto E, Chinesta F (2009) Numerical simulation of Friction Stir Welding by natural element methods. Int J Metal Form 2(4):225–234CrossRefGoogle Scholar
  16. 16.
    Guerdoux S, Fourment L (2009) A 3D numerical simulation of different phases of Friction Stir Welding. Model Simul Mater Sci Eng 17:075001CrossRefGoogle Scholar
  17. 17.
    Feulvarch E, Roux J-C, Bergheau J-M (2013) A simple and robust moving mesh technique for the finite element simulation of Friction Stir Welding. J Comput Appl Math 246:269–277CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Chiumenti M, Cervera M, Agelet de Saracibar C, Dialami N (2013) Numerical modeling of Friction Stir Welding processes. Comput Methods Appl Mech Eng 254:353–369CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Dialami N, Chiumenti M, Cervera M, Agelet de Saracibar C (2013) An apropos kinematic framework for the numerical modelling of Friction Stir Welding. Comput Struct 117:48–57CrossRefGoogle Scholar
  20. 20.
    Agelet de Saracibar C, Chiumenti M, Cervera M, Dialami N, Seret A (2014) Computational modeling and sub-grid scale stabilization of incompressibility and convection in the numerical simulation of Friction Stir Welding processes. Arch Comput Methods Eng 21(1), AcceptedGoogle Scholar
  21. 21.
    Bussetta P, Dialami N, Boman R, Chiumenti M, Agelet de Saracibar C, Cervera M, Ponthot J-P (2013) Comparison of a fluid and a solid approach for the numerical simulation of Friction Stir Welding with a non-cylindrical pin, Steel research international, acceptedGoogle Scholar
  22. 22.
    Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New YorkCrossRefzbMATHGoogle Scholar
  23. 23.
    Agelet de Saracibar C, Chiumenti M, Valverde Q, Cervera M (2006) On the orthogonal subgrid scale pressure stabilization of finite deformation J2 plasticity. Comput Methods Appl Mech Eng 195:1224–1251CrossRefzbMATHGoogle Scholar
  24. 24.
    Cervera M, Chiumenti M, Valverde Q, Agelet de Saracibar C (2003) Mixed linear/linear simplicial elements for incompressible elasticity and plasticity. Comput Methods Appl Mech Eng 192:5249–5263CrossRefzbMATHGoogle Scholar
  25. 25.
    Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2004) A stabilized formulation for incompressible plasticity using linear triangles and tetrahedral. Int J Plast 20:1487–1504CrossRefzbMATHGoogle Scholar
  26. 26.
    Chiumenti M, Valverde Q, Agelet de Saracibar C, Cervera M (2001) A stabilized formulation for incompressible elasticity using linear displacement and pressure interpolations. Comput Methods Appl Mech Eng 191:5253–5264CrossRefMathSciNetGoogle Scholar
  27. 27.
    Agelet de Saracibar C, Cervera M, Chiumenti M (1999) On the formulation of coupled thermoplastic problems with phase-change. Int J Plast 15:1–34CrossRefzbMATHGoogle Scholar
  28. 28.
    Cervera M, Agelet de Saracibar C, Chiumenti M (1999) Thermo-mechanical analysis of industrial solidification processes. Int J Numer Methods Eng 46:1575–1591CrossRefzbMATHGoogle Scholar
  29. 29.
    Cormen TH, Leiserson CE, Rivest RL (1990) Introduction to algorithms, 1st edn. MIT Press and McGraw-Hill. ISBN 0-262-03141-8Google Scholar
  30. 30.
    Dupont T, Liu Y-J (2002) Back and forth error compensation and correction methods for removing errors induced by uneven gradients of the level set function. J Comput Phys 183:83–116CrossRefMathSciNetGoogle Scholar
  31. 31.
    Osher S, Fedkiw R (2002) Level set methods and dynamic implicit surfaces. Springer-Verlag, New YorkGoogle Scholar
  32. 32.
    Osher S, Sethian J (1988) Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations. J Comput Phys 79:12–49CrossRefzbMATHMathSciNetGoogle Scholar
  33. 33.
    Zalesak ST (1979) Fully multidimensional flux-corrected transport. J Comput Phys 31:335–362CrossRefzbMATHMathSciNetGoogle Scholar
  34. 34.
    Reynolds AP (2000) Visualisation of material flow in autogenous friction stir welds. Sci Technol Weld Join 5(2):120–124CrossRefGoogle Scholar
  35. 35.
    Santiago D, Lombera G, Urquiza S, Agelet de Saracibar C, Chiumenti M (2010) Modelado termomecánico del proceso de Friction Stir Welding utilizando la geometría real de la herramienta. Rev Int Métodos Numéricos para Cálculo Diseño Ing 26(4):293–303Google Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • N. Dialami
    • 1
    Email author
  • M. Chiumenti
    • 1
  • M. Cervera
    • 1
  • C. Agelet de Saracibar
    • 1
  • J. P. Ponthot
    • 2
  1. 1.International Center for Numerical Methods in Engineering (CIMNE)Technical University of CataloniaBarcelonaSpain
  2. 2.LTAS- MN2L, Aerospace & Mechanical EngineeringUniversity of LiegeLiegeBelgium

Personalised recommendations