International Journal of Material Forming

, Volume 8, Issue 1, pp 127–135 | Cite as

Analytical and numerical modeling of light scattering in composite transmission laser welding process

  • André Chateau Akué Asséko
  • Benoît Cosson
  • Mylène Deleglise
  • Fabrice Schmidt
  • Yannick Le Maoult
  • Eric Lafranche
Original Research

Abstract

Analytical and numerical models for laser beam scattering in the thermoplastics composites are presented. The numerical model is based on Ray Tracing, an optical method to compute the optical propagation of laser beams in inhomogeneous media with spatially varying dispersion of the refractive index. In this study, only the case of unidirectional thermoplastic composites (UD) is presented. During transmission laser welding process, a divergence of the laser beam is observed in the first part (transparent in the laser wavelength) due to the internal refraction at the microscopic scale of the beam at each matrix-fiber interface. At the macroscopic scale, this phenomenon leads to the light scattering of the laser beam in this heterogeneous media. Under these conditions, a modeling of the propagation of a laser beam appears essential. An analytical model compared to numerical model is proposed, that enables to simulate and to optimize the laser source at the welding interface. This model provides a good estimation of the laser beam intensity profile at the welding interface (radiative heat well defined) and the beam widening. Those steps are necessary to describe the heat source in the laser welding process thermal simulations. The distribution of the heat source at the interface is one of the most important parameter in the description of the laser welding process.

Keywords

Laser welding Ray tracing Light scattering Thermoplastics composites Continuous fiber composites 

References

  1. 1.
    Troughton M (1997) Chapter 13 - laser welding. In: Handbook of plastics joining. William Andrew Publishing, Norwich, pp 101–104Google Scholar
  2. 2.
    Churchill SW, Clark GC, Sliepcevich CM (1960) Light-scattering by very dense monodispersions of latex particles. Discuss Faraday Soc 30:192–199CrossRefGoogle Scholar
  3. 3.
    Labeas GN, Moraitis GA, Katsiropoulos CV (2010) Optimization of laser transmission welding process for thermoplastic composite parts using thermo-mechanical simulation. J Compos Mater 44(1):113–130CrossRefGoogle Scholar
  4. 4.
    Shanmugam NS, Buvanashekaran G, Sankaranarayanasamy K, Ramesh Kumar S (2010) A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Mater Des 31(9):4528–4542CrossRefGoogle Scholar
  5. 5.
    Grewell DA, Benatar A (2003) Plastics and composites: Welding handbook. Hanser Verlag, MunchenGoogle Scholar
  6. 6.
    Coelho JMP, Abreu MA, Carvalho Rodrigues F (2008) Modelling the spot shape influence on high-speed transmission lap welding of thermoplastics films. Opt Lasers Eng 46(1):55–61CrossRefGoogle Scholar
  7. 7.
    Ilie M, Kneip J-C, Matteï S, Nichici A, Roze C, Girasole T (2007) Through-transmission laser welding of polymers—temperature field modeling and infrared investigation. Infrared Phys Technol 51(1):73–79CrossRefGoogle Scholar
  8. 8.
    Ilie M, Grevey D, Mattei S, Cicala E, Stoica V (2010) Diode laser welding of ABS: experiments and process modeling. arXiv:1002.1241Google Scholar
  9. 9.
    Mingliang C (2009) Gap Bridging in laser transmission welding of thermoplastics. Queen’s University, Kingston, Ontario, Canada, 2009Google Scholar
  10. 10.
    Rosenthal D (1946) The theory of moving sources of heat and its application to metal treatments. ASME, CambridgeGoogle Scholar
  11. 11.
    Hou ZB, Komanduri R (2000) General solutions for stationary/moving plane heat source problems in manufacturing and tribology. Int J Heat Mass Transfer 43(10):1679–1698CrossRefMATHGoogle Scholar
  12. 12.
    Suthar KJ, Patten J, Dong L, Abdel-Aal H (2008) Estimation of temperature distribution in silicon during micro laser assisted machining. pp 301–309Google Scholar
  13. 13.
    Mayboudi LS (2008) Heat transfer modelling and thermal imaging experiments in laser transmission welding of thermoplastics. Queen’s University (Canada), 2008Google Scholar
  14. 14.
    Russek UA (2004) Laser beam welding of thermoplastics parameter influence on weld seam quality—experiments and modeling. In ICALEO 2004, 23th International Congress on Applications of Lasers and Electro Optics. CD-ROM, 2004, pp 501–509Google Scholar
  15. 15.
    Zak G, Mayboudi L, Chen M, Bates PJ, Birk M (2010) Weld line transverse energy density distribution measurement in laser transmission welding of thermoplastics. J Mater Process Technol 210(1):24–31CrossRefGoogle Scholar
  16. 16.
    Kuang J-H, Hung T-P, Chen C-K (2012) A keyhole volumetric model for weld pool analysis in Nd:YAG pulsed laser welding. Opt Laser Technol 44(5):1521–1528CrossRefGoogle Scholar
  17. 17.
    Kim K, Guo Z (2004) Ultrafast radiation heat transfer in laser tissue welding and soldering. Numer Heat Tran A Appl 46(1):23–40CrossRefGoogle Scholar
  18. 18.
    Cosson B, Schmidt F, Le Maoult Y, Bordival M (2011) Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method. Int J Mater Form 4(1):1–10CrossRefGoogle Scholar
  19. 19.
    Flock ST, Wilson BC, Patterson MS (1989) Monte Carlo modeling of light propagation in highly scattering tissues. II. Comparison with measurements in phantoms. IEEE Trans Biomed Eng 36(12):1169–1173CrossRefGoogle Scholar
  20. 20.
    Ren N, Liang J, Qu X, Li J, Lu B, Tian J (2010) GPU-based Monte Carlo simulation for light propagation in complex heterogeneous tissues. Opt Express 18(7):6811–6823CrossRefGoogle Scholar
  21. 21.
    Ilie M, Kneip J-C, Matteï S, Nichici A, Roze C, Girasole T (2007) Laser beam scattering effects in non-absorbent inhomogenous polymers. Opt Lasers Eng 45(3):405–412CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • André Chateau Akué Asséko
    • 1
    • 2
    • 3
  • Benoît Cosson
    • 1
  • Mylène Deleglise
    • 1
  • Fabrice Schmidt
    • 2
  • Yannick Le Maoult
    • 2
  • Eric Lafranche
    • 1
  1. 1.Mines Douai, Department of Polymers and Composites Technology & Mechanical EngineeringDouai CedexFrance
  2. 2.Mines Albi, ICA-ALBI, Campus JarlardAlbiFrance
  3. 3.Université Lille Nord de FranceLilleFrance

Personalised recommendations