International Journal of Material Forming

, Volume 8, Issue 1, pp 111–118 | Cite as

Numerical simulation of extruded clay paste compression

  • Jérémie Vignes
  • Fabrice Schmidt
  • Gilles Dusserre
  • Jean Frédéric Dalmasso
Original Research


The manufacturing process of clay tiles includes a pressing step in which the material undergoes stresses, that may result in the appearance of defects. To understand the phenomena involved, a numerical model of the pressing step was developed. Different tests were performed to determine the different behaviour laws necessary to the numerical simulation (rheological, tribological, damage). A rheological study, based on free compression tests, allowed to charaterize the elasto-visco-plastic behaviour of the extruded clay paste. The constitutive parameters were estimated by inverse analysis of the experimental force displacement curves using a Strategic evolution algorithm coupled with a metamodel. Two damage models, the Latham and Crockoft criterion and the Oyane criterion, were compared to model the cracking. To simulate the crack’s propagation, an element deletion algorithm was used. The friction models of Coulomb and Tresca were investigated to model the global friction between the clay and the tools. The different parameters of the friction law were identified by inverse analysis of an experimental pressing force obtained during a shaping test. The identified model is valided on the case study of an instrumented forming of a tile lug and allows to simulate the shaping of an industrial tile.


Clay forming Numerical simulation Constitutive law Free compression test Inverse analysis 



Young’s modulus




Strain rate sensitivity parameter

\( \overline{\mathrm{m}} \)

Tresca’s friction parameter


Coulomb’s friction parameter


Strain hardening sensitivity parameter


Hydrostatic pressure

\( {\overline{\upvarepsilon}}_{\mathrm{R}} \)

Equivalent plastic strain

\( {\overline{\upvarepsilon}}_{\mathrm{V}} \)

Equivalent viscoplastic strain

\( {\overset{\cdot }{\overline{\upvarepsilon}}}_{\mathrm{V}} \)

Equivalent viscoplastic strain rate

\( {\overline{\overline{\upvarepsilon}}}_{\mathrm{E}} \)

Elastic strain tensor

\( \overline{\overline{\mathrm{I}}} \)

Identity tensor


Poisson’s ratio

σI, σII, σIII

Principal stresses


Flow stress


Normal stress

\( \overline{\upsigma} \)

Von Mises stress

\( \overline{\overline{\upsigma}} \)

Stress tensor


Shear stress

tr ()

Mathematical function Trace



The present study was supported by the Terreal company. The authors would like to acknowledge this industrial partner for this support and his help.


  1. 1.
    Aoudja ZF (1988) Comportement du melange eau-argile vis à vis du procédé d’extrusion (in french), PhD Thesis, INSA de RennesGoogle Scholar
  2. 2.
    Aydin I, Biglari FR, Briscoe BJ, Lawrence CJ, Adams MJ (2000) Physical and numerical modelling of a ram extrusion of paste materials: conical die entry case. Comput Mater Sci 18:141–155CrossRefGoogle Scholar
  3. 3.
    Baran B, Ertürk T, Sarikaya Y, Alemdaroglu T (2001) Workability test method for metals applied to examine a workability measure (plastic limit) for clays. Appl Clay Sci 20:53–63CrossRefGoogle Scholar
  4. 4.
    Bouszakis KD, Efstathiou K, Paradisiadis G, Tsouknidas A (2008) Experimental and FEM supported investigation of the wet ceramic clay extrusion for the determination of the stress distribution on the applied tools’ surface. J Eur Ceram Soc 28:2117–2127CrossRefGoogle Scholar
  5. 5.
    Cockroft MG, Latham DJ (1972) Ductility and the workability of metals pp 33–39Google Scholar
  6. 6.
    Djelal C (2001) Designing an perfecting a tribometer for the study of friction of a concentrated clay-water mixture against a metallic surface. Mater Struct 34:51–58CrossRefGoogle Scholar
  7. 7.
    Emmerich M, Giotis A, Ozdemir M, Black T, Giannakoglou K (2002) Meta-model assisted Evolution strategies. Proceedings of the international conference on parallel problem fom natureGoogle Scholar
  8. 8.
    Engmann J, Servais C, Burbidge S (2000) Squeeze flow theory and applications to rheometry: a review. J Non-Newtonian Fluid Mech 328(8):601–605Google Scholar
  9. 9.
    Foudrinier E (2007) Etude numérique et experimentale du procédé d’extrusion de pâtes argileuses (in french),PhD Thesis, Ecole des Mines de ParisGoogle Scholar
  10. 10.
    Gagou Y, Padayodi E, Atcholi KE, Mezzane D, Fremy M-A, Saint Gregoire P (2008) Etude comparative du comportement mécanique des matrices de quatre types d’argileGoogle Scholar
  11. 11.
    Hoffmeister F, Back T (1990) Genetic algorithms and evolution strategic: similarities and differences. Dortmund university, Bericht, 365Google Scholar
  12. 12.
    Kocserha I, Gömze LA (2010) Friction properties of clay compounds. Appl Clay Sci 48:425–430CrossRefGoogle Scholar
  13. 13.
    Lee HC, Choi JS, Jung KH, Im YI (2009) Application of element deletion method for numerical analyses of cracking. Process Achiev Mech Mater Eng 154–161Google Scholar
  14. 14.
    Lian G, Thornton C, Adam MJ (1993) A theoretical study of the liquid bridge forces between two rigide spherical bodies. J Colloid Interface Sci 11:138–147CrossRefGoogle Scholar
  15. 15.
    Oyane M (1972) Criteria of ductile fracture strain pp 1507–1513Google Scholar
  16. 16.
    Ribeiro MJ, Ferreira JM, Labrincha JA (2005) Plastic behaviour of different ceramic pastes processed by extrusion. Ceram Int 31:515–519CrossRefGoogle Scholar
  17. 17.
    Soulie F (2005) Cohésion par capillarité et comportement mécanique de milieux granulaires humides, PhD ThesisGoogle Scholar

Copyright information

© Springer-Verlag France 2013

Authors and Affiliations

  • Jérémie Vignes
    • 1
  • Fabrice Schmidt
    • 1
  • Gilles Dusserre
    • 1
  • Jean Frédéric Dalmasso
    • 2
  1. 1.Université de Toulouse; Mines Albi, INSA, UPS, ISAE, ICA (Institut Clément ADER)Albi cedex 09France
  2. 2.CRED TerrealCastelnaudaryFrance

Personalised recommendations