Compact and flexible optical sensor designed for on-line monitoring

  • Laurent Jourdainne
  • Rodrigue Matadi Boumbimba
  • Badi Triki
  • Michel Bouquey
  • René Muller
  • Pascal Hébraud
  • Pierre Pfeiffer
Original Research


A new on line optical sensor based on light scattering dedicated to real-time monitoring during processing of polymers blends and polymers nanocomposites has been developed. The sensor is designed to monitor the quality of a polymer melt or of a dispersion of nanofillers in a polymeric matrix during the process of extrusion. This sensor presents three openings: two for light sensor setups (one for transmission measurements and the other for 90°-scattered light measurements) and one for the incident laser beam. The experimental validation of this optical sensor has been realized on two materials: poly(methyl methacrylate) (PMMA) and on the nanocomposites obtained by the melt mixing of this polymer matrix with modified montmorillonite (MMT) clays. Experimental results proved the good results in terms of signal repeatability and sensitivity to organoclay particle concentration and structures of nanocomposites respectively.


A. nanoclays A. nano composites D. optical measurements E. extrusion 



This study was carried out in the frame IP European research program “MULTIHYBRIDS”, No. 026685-2, in the 6th Framework Program. We also thank Mr Christophe MELART and Mr Christophe SUTTER for their help and their availability.


  1. 1.
    Chen G, Shen D, Qi Z (2000) 2000. J Mater Res 15:351CrossRefGoogle Scholar
  2. 2.
    Lan T, Pinnavaia TJ (1994) Chem Mater 6:2216CrossRefGoogle Scholar
  3. 3.
    Kojima Y, Kawasumi M, Usuki A, Okada A, Fukushima Y, Kurachi T, Kamigaito O (1993) J Mater Res 8:1185CrossRefGoogle Scholar
  4. 4.
    Ginzburg VV, Singh C, Balazs AC (2000) Macromolecules 33:1089CrossRefGoogle Scholar
  5. 5.
    Powell CE, Beal GW (2006) Physical properties of polymer/clay nanocomposites. Curr Opin Solid State Mater Sci 10(2):73–80CrossRefGoogle Scholar
  6. 6.
    Pinnavaia TJ, Beall GW (eds) (2000) Polymer–clay nanocomposites. Wiley, New YorkGoogle Scholar
  7. 7.
    Giannelis EP, Krishnamoorti R, Manias E (1999) Adv Polym Sci 138:107CrossRefGoogle Scholar
  8. 8.
    Lee EC, Mielewski DF, Baird RJ (2004) Exfoliation and dispersion enhancement in polypropylene nanocomposites by in-situ melt phase ultrasonication. Polym Eng Sci 44(9):1773–1782CrossRefGoogle Scholar
  9. 9.
    Nguyen QT, Baird DG (2006) Preparation of polymer–clay nanocomposites and their properties. Adv Polym Tech 25(4):270–285CrossRefGoogle Scholar
  10. 10.
    Utracki LA, Kamal MR (2002) Clay-containing polymeric nanocomposites. Arabian Journal for science and Engineering 27 (1c):43–68Google Scholar
  11. 11.
    Vaia RA, Ishii H, Giannelis EP (1993) Chem Mater 5:1694CrossRefGoogle Scholar
  12. 12.
    Liu X, Wu Q (2001) PP/clay nanocomposites prepared by grafting-melt intercalation. Polymer 42(25):10013–10019CrossRefGoogle Scholar
  13. 13.
    Lepoittevin B, Devalckenaere M, Pantoustier N, Alexandre M, Kubies D, Calberg C et al (2002) Poly(e-caprolactone)/clay nanocomposites prepared by melt intercalation: mechanical, thermal and rheological properties. Polymer 43(14):4017–4023CrossRefGoogle Scholar
  14. 14.
    Fischer D et al (2008) Monitoring of the sol-gel synthesis of organic-inorganic hybrids by FTIR transmission, FTIR/ATR, NIR and Raman spectroscopy. Macromol Symp 265:134–143CrossRefGoogle Scholar
  15. 15.
    Fischer D et al (2006) Process monitoring of polymers by in-line ATR-IR, NIR and Raman spectroscopy and ultrasonic measurements. Compt Rendus Chim 9(11–12):1419–1424CrossRefGoogle Scholar
  16. 16.
    El-Mabrouk K et al (2008) Effect of shear on phase-separation in polystyrene/poly(vinyl methyl ether)/organoclay nanocomposites. J Nanosci Nanotechnol 8(4):1895–1900CrossRefGoogle Scholar
  17. 17.
    Peng M et al (2007) Effect of an organoclay on the reaction-induced phase-separation kinetics and morphology of a poly(ether imide)/epoxy mixture. J Appl Polym Sci 104(2):1205–1214CrossRefGoogle Scholar
  18. 18.
    Wang SH et al (2005) Morphology, mechanical and optical properties of transparent BR/clay nanocomposites. Polym Test 24(6):766–774CrossRefGoogle Scholar
  19. 19.
    Pogodina NV et al (2008) Processing and characterization of biodegradable polymer nanocomposites: detection of dispersion state. Rheologica Acta 47(5–6):543–553CrossRefGoogle Scholar
  20. 20.
    Bur AJ et al (2005) Measuring the extent of exfoliation in polymer/clay nanocomposites using real-time process monitoring methods. Polymer 46(24):10908–10918CrossRefGoogle Scholar
  21. 21.
    Bur AJ et al (2004) A dielectric slit die for in-line monitoring of polymer compounding. Rev Sci Instrum 75(4):1103–1109CrossRefGoogle Scholar
  22. 22.
    Matadi R, Makradi A, Ahzi S, Sieffert JG, Etienne S, Rush D, Vaudemond R, Muller R, Bouquey M (2009) Preparation, structural characterization, and thermomechanical properties of poly(methyl methacrylate)/organoclay nanocomposites by melt intercalation. J Nanosci Nanotechnol 9:2923–2930CrossRefGoogle Scholar

Copyright information

© Springer-Verlag France 2010

Authors and Affiliations

  • Laurent Jourdainne
    • 1
  • Rodrigue Matadi Boumbimba
    • 1
  • Badi Triki
    • 1
  • Michel Bouquey
    • 1
  • René Muller
    • 1
  • Pascal Hébraud
    • 2
  • Pierre Pfeiffer
    • 3
  1. 1.Laboratoire d’Ingénierie des Polymères pour les Hautes Technologies, ECPM-LIPHTUniversity of StrasbourgStrasbourgFrance
  2. 2.Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UDSUniversity of StasbourgStrasbourgFrance
  3. 3.Laboratoire des Systèmes PhotoniquesUniversity of StrasbourgStrasbourgFrance

Personalised recommendations