Efficient mold cooling optimization by using model reduction

  • Fabrice Schmidt
  • Nicolas Pirc
  • Marcel Mongeau
  • Francisco Chinesta
Original Research

Abstract

Optimization and inverse identification are two procedures usually encountered in many industrial processes reputed gourmand for the computing time view point. In fact, optimization implies to propose a trial solution whose accuracy is then evaluated, and if needed it must be updated in order to minimize a certain cost function. In the case of mold cooling optimization the evaluation of the solution quality needs the solution of a thermal model, in the whole domain and during the thermal history. Thus, the optimization process needs several iterations and then the computational cost can become enormous. In this work we propose the use of model reduction for accomplishing this kind of simulations. Thus, only one thermal model is solved using the standard discretization technique. After that, the most important modes defining the temperature evolution are extracted by invoking the proper orthogonal decomposition, and all the other thermal model solutions are performed by using the reduced order approximation basis just extracted. The CPU time savings can be impressive.

Keywords

BEM Optimisation Model reduction Injection moulding 

References

  1. 1.
    Agassant J-F, Avenas P, Sergent J-Ph, Carreau PJ (1991) Polymer processing—principle and modelling. Hanser, New YorkGoogle Scholar
  2. 2.
    Ammar A, Ryckelynck D, Chinesta F, Keunings R (2006) On the reduction of kinetic theory models related to finitely extensible dumbbells. J Non-Newton Fluid Mech 134:136–147MATHCrossRefGoogle Scholar
  3. 3.
    Ammar A, Pruliere E, Férec J, Chinesta F, Cueto E (2009) Coupling finite elements and reduced approximation bases. Eur J Contracpt Reprod Health Care 18/5–6:445–463Google Scholar
  4. 4.
    Bialecki A, Jurgas P, Kuhn G (2002) Dual reciprocity BEM without matrix inversion for transient heat conduction. Eng Anal Bound Elem 26:227–236MATHCrossRefGoogle Scholar
  5. 5.
    Bikas A, Kanarachos A (1999) The dependence of cooling channels system geometry parameters on product quality as a result of uniform mold cooling. Proceedings of the 57th Annual Technical Conference ANTEC 99, 578–583Google Scholar
  6. 6.
    Boillat E, Glardon R, Paraschivescu D (2002) J Phys IV 102:27–38Google Scholar
  7. 7.
    Brebbia CA, Dominguez J (1992) Boundary elements, an introductory course. WIT Press/Computational Mechanics PublicationsGoogle Scholar
  8. 8.
    Brebbia CA, Chen CS, Power H (1999) Dual reciprocity method using compactly supported radial basis functions. Commun Numer Methods Eng 15/2:137–150MathSciNetGoogle Scholar
  9. 9.
    Chinesta F, Ammar A, Lemarchand F, Beauchchene P, Boust F (2008) Alleviating mesh constraints: model reduction, parallel time integration and high resolution homogenization. Comput Methods Appl Mech Eng 197/5:400–413CrossRefGoogle Scholar
  10. 10.
    Fletcher R (1987) Practical methods of optimization. John Wiley & Sons, New YorkGoogle Scholar
  11. 11.
    Godinho L, Tadeu A, Simoes N (2004) Study of transient heat conduction in 2.5D domains using the boundary element method. Eng Anal Bound Elem 28/6:593–606CrossRefGoogle Scholar
  12. 12.
    Holmes PJ, Lumleyc JL, Berkoozld G, Mattinglya JC, Wittenberg RW (1997) Low-dimensional models of coherent structures in turbulence. Phys Rep 287:337–384MathSciNetCrossRefGoogle Scholar
  13. 13.
    Huang J, Fadel G (2001) J Mech Des 123:226–239CrossRefGoogle Scholar
  14. 14.
    Karhunen K (1946) Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann Acad Sci Fennicae ser Al Math Phys 37:3–79Google Scholar
  15. 15.
    Krysl P, Lall S, Marsden JE (2001) Dimensional model reduction in non-linear finite element dynamics of solids and structures. Int J Numer Methods Eng 51:479–504MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Loève MM (1963) Probability theory. The University Series in higher mathematics, 3rd edn. Van Nostrand, PrincetonGoogle Scholar
  17. 17.
    Lorenz EN (1956) Empirical orthogonal functions and statistical weather prediction. MIT, Departement of Meteorology, Scientific Report N1, Statistical Forecasting ProjectGoogle Scholar
  18. 18.
    Lu Y, Li D, Xiao J (1996) Simulation of cooling process of injection molding. Prog Nat Sci 6/2:227–234Google Scholar
  19. 19.
    Mathey E (2004) PhD thesis, Toulouse University (in French)Google Scholar
  20. 20.
    Mathey E, Penazzi L, Schmidt FM, Ronde-Oustau F (2004) Automatic optimization of the cooling of injection mold based on the boundary element method Materials Processing and Design: Modeling, Simulation and Applications. Proceedings NUMIFORM 04, 222–227Google Scholar
  21. 21.
    Moller J, Carlson M, Alterovitz R, Swartz J (1998) Post-ejection cooling behavior of injection molded parts. Proceeding of the 56th Annual Technical Conference ANTEC 98, 525–527Google Scholar
  22. 22.
    Niromandi S, Alfaro I, Cueto E, Chinesta F (2008) Real-time deformable models of non-linear tissues by model reduction techniques. Comput Meth Programs Biomed 91:223–231CrossRefGoogle Scholar
  23. 23.
    Opolski SW, Kwon TW (1987) Injection molding cooling system design. Annual Technical Conference and Exhibition, Society of Plastics Engineers, 264–268Google Scholar
  24. 24.
    Özisik MN (1985) Heat transfer, a basic approach. McGraw HillGoogle Scholar
  25. 25.
    Osswald TA (1998) Polymer processing fundamentals. Carl HANSER Verlag, MunichGoogle Scholar
  26. 26.
    Park HM, Cho DH (1996) The use of the Karhunen-Loève decomposition for the modelling of distributed parameter systems. Chem Eng Sci 51:81–98CrossRefGoogle Scholar
  27. 27.
    Park S, Kwon T (1998) Polym Eng Sci 38:1450–1462MathSciNetCrossRefGoogle Scholar
  28. 28.
    Pasquetti R, Petit D (1995) Inverse diffusion by boundary elements. Eng Anal Bound Elem 15:197–205CrossRefGoogle Scholar
  29. 29.
    Pirc N, Bugarin F, Schmidt FM, Mongeau M (2008) 3D BEM-based cooling-channel shape optimization for injection molding processes. International Journal for Simulation and Multidisciplinary Design Optimization 2/3:245–252CrossRefGoogle Scholar
  30. 30.
    Pirc N, Schmidt FM, Mongeau M, Bugarin F, Chinesta F (2009) Optimization of 3D cooling channels in injection molding using DRBEM and model reduction. International Journal of Material Forming 2(01):271–274CrossRefGoogle Scholar
  31. 31.
    Rao NS, Schumacher G, Schott NR, O’Brien KT (2002) Optimization of cooling systems in injection molds by an easily applicable analytical model. J Reinf Plast Compos 21/5:451–459CrossRefGoogle Scholar
  32. 32.
    Ryckelynck D (2005) A priori hyperreduction method: an adaptive approach. J Comput Phys 202:346–366MATHCrossRefGoogle Scholar
  33. 33.
    Ryckelynck D, Hermanns L, Chinesta F, Alarcón E (2005) An efficient “a priori” model reduction for boundary element models. Eng Anal Bound Elem 29:796–801MATHCrossRefGoogle Scholar
  34. 34.
    Ryckelynck D, Chinesta F, Cueto E, Ammar A (2006) On the “a priori” model reduction: overview and recent developments. Arch Comput Methods Engng, State Art Rev 13/1:91–128MathSciNetCrossRefGoogle Scholar
  35. 35.
    Sirovich L (1987) Turbulence and the dynamics of coherent structures part I: coherent structures. Quart Appl Math XLV:561–57MathSciNetGoogle Scholar
  36. 36.
    Sutradhar A, Paulino GH, Gray LJ (2002) Transient heat conduction in homogeneous and nonhomogeneous materials by the Laplace transform Galerkin boundary element method. Eng Anal Bound Elem 26/2:119–132CrossRefGoogle Scholar
  37. 37.
    Tang L, Pochiraju K, Chassapis C, Manoochehri S (1998) J Mech Des 120:165–174CrossRefGoogle Scholar
  38. 38.
    Verdon N, Allery C, Béghein C, Hamdouni A, Ryckelynck D (2009) Reduced-order modelling for solving linear and non-linear equations. Int J Numer Methods Eng. doi:10.1002/cnm.1286
  39. 39.
    MH Wesselmann (1998) Impact of moulding conditions on the properties of short fibre reinforced high performance thermoplastic parts. PhD Thesis, Ecole des Mines AlbiGoogle Scholar
  40. 40.
    Yang SY, Lien L (1996) Effects of cooling time and mold temperature on quality of moldings with precision contour. Adv Polym Technol 15(4):289–295Google Scholar

Copyright information

© Springer-Verlag France 2010

Authors and Affiliations

  • Fabrice Schmidt
    • 1
  • Nicolas Pirc
    • 1
  • Marcel Mongeau
    • 2
  • Francisco Chinesta
    • 3
  1. 1.Université de Toulouse; ICA (Institut Clément Ader); Ecole des Mines AlbiAlbiFrance
  2. 2.Institut de MathématiquesUniversité de Toulouse, UPSToulouse Cedex 9France
  3. 3.EADS Corporate Foundation International ChairGEM UMR CNRSCentrale NantesFrance

Personalised recommendations