Infrared heating stage simulation of semi-transparent media (PET) using ray tracing method

  • Benoit Cosson
  • Fabrice Schmidt
  • Yannick Le Maoult
  • Maxime Bordival
Original Research


Stretch blow molding or thermoforming processes includes an infrared heating stage of the thermoplastic preform by infrared heaters. The knowledge of the temperature distribution on the surface and through the thickness of the preform is important to make good prediction of thickness and properties of the manufactured parts. Currently in industry, the fitting of the process parameters is given by experience and is expensive. Our objective is to provide tools that are able to simulate the heat transfers between infrared heaters and preforms in order to reduce the fitting cost and to control the qualities of the end products. The optical method called “ray tracing” is used to simulate the radiative transfer. First, we compare the ray tracing method with the view factor method on a simple example: the heating of a square sheet by one infrared lamp. Then, we perform 3D heating stage simulations and compare with experiments. The ray tracing method allows to compute a source term in the transient heat balance equation. Then commercial finite element method softwares can be used to solve the heat balance equation.


Infrared heating Ray tracing Stretch blow molding Thermoforming processes Semi-transparent media PET 



This work could not be possible without our industrial partner: O. Demangeon from Toshiba Lighting.


  1. 1.
    Champin C (2007) Modélisation 3d du chauffage par rayonnement infrarouge et de l’étirage soufflage de corps creux en p.e.t. Ph.D. thesis, École des Mines de ParisGoogle Scholar
  2. 2.
    Cosson B, Chevalier L, Yvonnet J (2009) Optimization of the thickness of PET bottles during stretch blow molding by using a mesh-free (numerical) method. Int Polym Process 03:223–233CrossRefGoogle Scholar
  3. 3.
    Desvignes F (1997) Rayonements optiques. Masson, FranceGoogle Scholar
  4. 4.
    Erchiqui F, Hamani I, Charette A (2009) Modélisation par éléments finis du chauffage infrarouge des membranes thermoplastiques semi-transparentes. Int J Therm Sci 48(1):73–84CrossRefGoogle Scholar
  5. 5.
    Leuenberger H, Person RA (1956) Compilation of radiation shape factors for cylindrical assemblies. Presented at ASME Annual Meeting, New York, NY, Nov. 25–30, 1956Google Scholar
  6. 6.
    Mayhan K, James J, Bosch W (1965) Poly(ethylene terephtalate). I. Study of crystallization kinetics. J Appl Polym Sci 9:3617–3624Google Scholar
  7. 7.
    Modest M (1993) Radiative heat transfer balbla. Elsevier ScienceGoogle Scholar
  8. 8.
    Monteix S (2001) Modélisation du chauffage convecto-radiatif de préformes en pet pour la réalisation de corps creux. Ph.D. thesis, École des Mines de ParisGoogle Scholar
  9. 9.
    Monteix S, Maoult YL, Schmidt F, Arcens JP (2004) Quantitative infrared thermography applied to blow moulding process: measurement of a heat transfer coefficient. QIRT J 1(2):133CrossRefGoogle Scholar
  10. 10.
    Monteix S, Schmidt F, Maoult YL, Yedder RB, Diraddo RW, Laroche D (2001) Experimental study and numerical simulation of preform or sheet exposed to infrared radiative heating. J Mater Process Technol 119(1–3):90–97CrossRefGoogle Scholar
  11. 11.
    Pharr M, Humphreys G (2004) Physically based rendering: From theory to implementation. Elsevier Science, USAGoogle Scholar
  12. 12.
    Sacadura J (1973) Initiation aux transferts thermiques. Lavoisier, FranceGoogle Scholar
  13. 13.
    Schmidt F, Agassant J, Bellet M (1998) Experimental study and numerical simulation of the injection stretch/blow molding process. Polym Eng Sci 38(9):1399–1412CrossRefGoogle Scholar
  14. 14.
    Siegel R, Howel J (1992) Thermal radiation heat transfer. Hemisphere Publishing Corporation, USAGoogle Scholar

Copyright information

© Springer-Verlag France 2010

Authors and Affiliations

  • Benoit Cosson
    • 1
  • Fabrice Schmidt
    • 2
  • Yannick Le Maoult
    • 2
  • Maxime Bordival
    • 2
  1. 1.TCPIMEcole des Mines de DouaiDouai CedexFrance
  2. 2.CROMePUniversité de Toulouse, Mines AlbiAlbi, Cedex 09France

Personalised recommendations