Curing Simulation of Composites Coupled with Infrared Heating

  • S. Nakouzi
  • J. Pancrace
  • F. M. Schmidt
  • Y. Le Maoult
  • F. Berthet
Structures, properties and processing of polymers: F. Schmidt

Abstract

Because of higher specific strength and stiffness, low weight, and good resistance to corrosion, the use of composite materials in aerospace structures has increased. Aircraft industry has recently begun to investigate Liquid Composites Molding techniques (LCM) through research programs because of its ability to produce large parts at a low cost. In this paper, we have not addressed the filling step during which the resin flows through fibrous media, but we investigate the numerical simulation of curing reinforced RTM-6 by infrared heating. Finite element based program COMSOL Multiphysics™ has been used to simulate the curing process. Thermochemical model has been implemented in order to compute reaction rate as a function of reaction temperature and degree of conversion using a cure kinetic model.

Keywords

Composite Infrared heating Degree of curing Epoxy resin Carbon fibers Numerical modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Chern BC, Moon TJ, Howell JR (2002) On-line processing of unidirectional fiber composites using radiative heating: I. Model. J Compos Mater 36:1905CrossRefGoogle Scholar
  2. [2]
    Chern BC, Moon TJ, Howell JR (2002) On-line processing of unidirectional fiber composites using radiative heating: II. Radiative properties, experimental validation and process parameter selection. J Compos Mater 36:1935CrossRefGoogle Scholar
  3. [3]
    Kim J, Moon TJ, Howell JR (2003) Transient thermal modeling of in-situ curing during tape winding of composite cylinders. J Heat Transfer 125–137Google Scholar
  4. [4]
    Chern BC, Moon TJ, Howell JR (1995) Thermal analysis of in-situ curing for thermoset, hoop-wound structures using infrared heating: part II – dependent scattering effect. J Heat Transfer 117–681Google Scholar
  5. [5]
    Cunningham E, Monaghan PF, Brogan MT (1998) Prediction of the temperature profile with a composit sheets during pre-heating. Composite part A 51–61Google Scholar
  6. [6]
    Bailleul JL, Guyonvarch G, Garnier B, Jarny Y, Delaunay D (1996) Identification des propriétés thermiques de composites fibres de verre / résines thermodurcissables Application a l’optimisation des procédés de moulage. Revue Générale Thermique 36:65–77CrossRefGoogle Scholar
  7. [7]
    Ruiz E, Trochu F (2005) Thermomechanical properties during cure of glass-polyester RTM composites: elastic and viscoelastic modeling. J Compos Mater 39:881CrossRefGoogle Scholar
  8. [8]
    Ruiz E, Trochu F (2006) Multi-criteria thermal optimization in liquid composite molding to reduce processing stresses and cycle time. Compos Part A 37:913–924CrossRefGoogle Scholar
  9. [9]
    Balvers JM, Bersee HEN, Beukers A, Jansen KMB (2008) Determination of cure dependent properties for curing simulation of thick-walled composites. In: 49th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials ConferenceGoogle Scholar
  10. [10]
    Nguyen TMH (2007) Systèmes époxy-amines incluant un catalyseur externe phénolique: Cinétique de réticulation-vieillissement hydrolytiqueGoogle Scholar
  11. [11]
    Elsawi I, Olivier P, Demont P, Laurent C, Peigney A (2009) Rheological and kinetic behavior of double-walled carbon nanotubes filled epoxy resin. JNC 16 ToulouseGoogle Scholar

Copyright information

© Springer-Verlag France 2010

Authors and Affiliations

  • S. Nakouzi
    • 1
    • 2
  • J. Pancrace
    • 1
    • 2
  • F. M. Schmidt
    • 1
    • 2
  • Y. Le Maoult
    • 1
    • 2
  • F. Berthet
    • 1
    • 2
  1. 1.INSA, UPS, Mines Albi, ISAE ; ICA (Institut Clément Ader)Université de ToulouseAlbi cedexFrance
  2. 2.Ecole des Mines AlbiAlbiFrance

Personalised recommendations