International Journal of Material Forming

, Volume 3, Supplement 2, pp 1189–1204 | Cite as

Mechanical and geometrical approaches applied to composite fabric forming

  • Abel Cherouat
  • Houman Borouchaki
  • Laurence Giraud-Moreau
Original Research

Abstract

In this paper, we are interested in the forming of composite fabric by deep-drawing. Two approaches (geometrical and mechanical) are proposed for the simulation of the composite fabric forming. The geometrical approach is based on a fishnet model. It is well adapted to preliminary design phase and to give a suitable estimate of the resulting flat patterns. The mechanical approach is based on a meso-structural approach. It allows us to take into account the mechanical properties of composite fabric (fibres and resin) and the various dominant modes of deformation of fabrics during the forming process. During simulation of composite fabric forming, where large displacement and relative rotation of fibres are possible, severe mesh distortions occur after a few incremental steps. Hence an automatic mesh generation with remeshing capabilities is essential to carry out the finite element analysis. Some numerical simulations of forming process are proposed and compared with the experimental results in order to demonstrate the efficiency of the proposed approaches.

Keywords

Composite fabric Finite element Geometrical draping Deep-drawing Remeshing procedure Finite deformation 

References

  1. 1.
    Trochu F, Ruiz E, Achim V, Soukane S (2006) Advanced numerical simulation of liquid composite molding for process analysis and optimization. Compos Part A Appl Sci Manuf 37:890–902CrossRefGoogle Scholar
  2. 2.
    Marsh G (2006) Duelling with composites. Reinf Plast 50(6):18–23CrossRefMathSciNetGoogle Scholar
  3. 3.
    Asthana R, Kumar A, Dahotre NB (2006) Composites get in deep with new-generation engine. Reinf Plast 50(11):26–29CrossRefGoogle Scholar
  4. 4.
    Binétruy C (2004) Physique du moulage des composites avancés: aspects théoriques. Tech ing AM 3718:1–16Google Scholar
  5. 5.
    Boisse P (2004) Mise en forme des renforts fibreux de composites. Tech ing AM 3734:1–10Google Scholar
  6. 6.
    Billoët JL (1993) Introduction aux matériaux composites à hautes performances, TekneaGoogle Scholar
  7. 7.
    Rudd CD, Long AC (1997) Liguid molding technologies, Woodhead publishing LimitedGoogle Scholar
  8. 8.
    Kawabata S, Niwa M, Kawai H (1973) The Finite deformation theory of plain-weave fabrics, Parts I, II and III. J Text Inst 64:21–83CrossRefGoogle Scholar
  9. 9.
    Lim TC, Ramakrishna S, Shang HM (1999) Optimization of the formability of knitted fabric composite sheet by means of combined deep drawing and stretch forming. J Mater Process Technol 89–90:99–103CrossRefGoogle Scholar
  10. 10.
    Liu L, Chen J, Li X, Sherwood J (2005) Two-dimensional macro-mechanics shear models of woven fabrics. Compos Part A 36:105–114Google Scholar
  11. 11.
    Rozant O, Bourban PE, Manson JAE (2000) Drapability of dry textile fabrics for stampable thermoplastic performs. Compos Part A 31:1167–1177CrossRefGoogle Scholar
  12. 12.
    Hagege B, Boisse P, Billoёt JL (2004) Analysis and simulation of the constitutive behavior of fibrous reinforcements. In: Proceedings of Esaform 7 conference, Trondheim, avril. p. 317–20Google Scholar
  13. 13.
    Potluri P, Parlak I, Ramgulam R, Sagar TV (2006) Analysis of tow deformations in textile preforms subjected to forming forces. Compos Sci Technol 66(2):297–305CrossRefGoogle Scholar
  14. 14.
    Cherouat A, Gelin JC, Boisse P, Sabhi H (1995) Modélisation de l’emboutissage des tissus de fibres de verre par la méthode des éléments finis. Rev Europ Elém Finis 4:159–182MATHMathSciNetGoogle Scholar
  15. 15.
    Cherouat A, Billoët JL (2001) Mechanical and numerical modelling of composite manufacturing processes deep-drawing and laying-up of thin pre-impregnated woven fabrics. J Mat Proc Technol 118:460–471CrossRefGoogle Scholar
  16. 16.
    Boisse P, Buet K, Gasser A, Launay J (2001) Meso/macro-mechanical behaviour of textile reinforcements for thin composites. Compos Sci Technol 61(3):395–401CrossRefGoogle Scholar
  17. 17.
    Hamila N, Boisse P (2008) Simulations of textile composite reinforcement draping using a new semi-discrete three node finite element. Compos Part B Eng 39(6):999–1010CrossRefGoogle Scholar
  18. 18.
    ElHami A, Radi B, Cherouat A (2009) Treatment of the composite fabric’s shaping using a Lagrangian formulation, Math Comput Model 49(7–8):1337–1349CrossRefGoogle Scholar
  19. 19.
    Warby MK, Whiteman JR, Jiang W-G, Warwick P, Wright T (2003) Finite element simulation of thermoforming processes for polymer sheets. Math Comput Simul 61:209–218MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Nocent O (2001) Animation dynamique de corps déformables continues : application à la simulation de textile tricotés. Thèse de doctorat, université de Reims Champagne-Ardenne.Google Scholar
  21. 21.
    Lim T-C, Ramakrishna S (2002) Modelling of composite sheet forming: a review. Compos Part A Appl Sci Manuf 33:515–537CrossRefGoogle Scholar
  22. 22.
    Borouchaki H, Cherouat A, Billoët JL (1999) GeomDrap New Computer Aided Design and Manufacturing for Advanced Textile Composites, Version 1.Google Scholar
  23. 23.
    Borouchaki H, Cherouat A (2003) Drapage géométrique des composites. C R Acad Sci Paris, Série II B, mécanique des solides et des structures 331:437–442MATHGoogle Scholar
  24. 24.
    Harrison P, Clifford MJ, Long AC, Rudd CD (2004) A constituent-based predictive approach to modelling the rheology of viscous textile. Compos Part A 35:915–931CrossRefGoogle Scholar
  25. 25.
    Van Der Ween F (1999) Algorithms for draping fabrics on doubly curved surfaces. Int J Num Meth Engng 31:1415–1426CrossRefGoogle Scholar
  26. 26.
    Hancock SG, Potter KD (2005) Inverse drape modelling—an investigation of the set of shapes that can be formed from continuous aligned woven fibre reinforcements. Compos Part A Appl Sci Manuf 36(7):947–953CrossRefGoogle Scholar
  27. 27.
    Vanclooster K, Lomov SV, Verpoest I (2009) Experimental validation of forming simulations of fabric reinforced polymers using an unsymmetrical mould configuration. Compos Part A Appl Sci Manuf 40(4):530–539CrossRefGoogle Scholar
  28. 28.
    Potluri P, Sharma S, Ramgulam R (2001) Comprehensive drape modelling for moulding 3D textile preforms. Compos Part A Appl Sci Manuf 32(10):1415–1424CrossRefGoogle Scholar
  29. 29.
    Sharma SB, Sutcliffe MPF (2004) A simplified finite element model for draping of woven material. Compos Part A Appl Sci Manuf 35(6):637–643CrossRefGoogle Scholar
  30. 30.
    BenNaceur I, Cherouat A, Borouchaki H, Bachmann JM (2003) Caractérisation et modélisation de l’aptitude à la déformation des structures souples. Revue des composites et des matériaux avancés, N° 3Google Scholar
  31. 31.
    Umer R, Bickerton S, Fernyhough A (2008) Modelling the application of wood fibre reinforcements within liquid composite moulding processes. Compos Part A Appl Sci Manuf 39(4):624–639CrossRefGoogle Scholar
  32. 32.
    Frishfelds V, Staffan Lundström T, Jakovics A (2008) Bubble motion through non-crimp fabrics during composites manufacturing. Compos Part A Appl Sci Manuf 39(2):243–25CrossRefGoogle Scholar
  33. 33.
    Long AC (2001) Process modelling for liquid moulding of braided performs. Compos Part A Appl Sci Manuf 32(7):941–953CrossRefGoogle Scholar
  34. 34.
    Fan JP, Tang CY, Tsui CP, Chan LC, Lee TC (2006) 3D finite element simulation of deep drawing with damage development. Int J Mach Tools Manufacture 46(9):1035–1044CrossRefGoogle Scholar
  35. 35.
    Borouchaki H, Cherouat A, Laug P, Saanouni K (2002) Adaptative meshing for ductile fracture prediction in metal forming. C R Mec 330(10):709–716MATHCrossRefGoogle Scholar
  36. 36.
    Giraud-Moreau L, Borouchaki H, Cherouat A (2005) Remaillage adaptatif pour la mise en forme des tôles minces. C R Acad Sci Paris, Serie II B, Mécanique des Solides et des Structures 333 (4):371–378Google Scholar
  37. 37.
    Cho J-W, Yang D-Y (2002) A mesh refinement scheme for sheet metal forming analysis. Proc. of the 5th International Conference, NUMISHEET’02, pp. 307–312Google Scholar
  38. 38.
    Fourment L, Chenot J-L (1994) Adaptive remeshing and error control for forming processes. Rev Europ élém finis 3(2):247–279MATHMathSciNetGoogle Scholar
  39. 39.
    Bergsma OK, Huisman J (1988) Deep drawing of fabric reinforced thermoplastic, 2nd Inter. Conf. Comp. Aided Design in Composite Material Technology, p. 323–333.Google Scholar
  40. 40.
    Gommers B, Verpoest I, Van Houtte P (1996) Modelling the elastic properties of knitted fabric-reinforced composites. Compos Sci Technol 56:685–694CrossRefGoogle Scholar
  41. 41.
    Peng X, Cao J (2002) A dual homogenization and finite element approach for material characterization of textile composites. Compos Part Eng 33:45–56CrossRefGoogle Scholar
  42. 42.
    Luo Y, Verpoest I (2002) Biaxial tension and ultimate deformation of knitted fabric reinforcements. Compos Part A Appl Sci Manuf 33:197–203CrossRefGoogle Scholar
  43. 43.
    Padmanabhan KA (2008) Metal forming at very low strain rates. Encyclopedia of Materials: Science and Technology, pp. 5384–5389Google Scholar
  44. 44.
    Blanlot R, Billoët JL (1996) Loi de comportement orthotrope évolutive pour la simulation de la mise en forme des tissus composites. National Journey of Composites, pp. 761–772Google Scholar
  45. 45.
    ten Thije RHW, Akkerman R, Huétink J (2007) Large deformation simulation of anisotropic material using an updated Lagrangian finite element method. Comput Methods Appl Mech Eng 196(33–34):3141–3150MATHCrossRefGoogle Scholar
  46. 46.
    Gilormini P, Roudier P (1993) Abaqus and Finite Strain, Rapport interne n° 140, CachanGoogle Scholar
  47. 47.
    Abaqus theory (2004) User’s ManualGoogle Scholar
  48. 48.
    Penso F (1999) Adaptation d’un banc de simulation expérimentale Réalisation d’essais de validation expérimentale : Simulation numérique d’essais de mise en forme. Université de Technologie de Troyes-ENSAM LM2SGoogle Scholar
  49. 49.
    Cherouat A, Borouchaki H (2009) Actual state of the art of composite fabric forming: geometrical and mechanical approaches. Materials 2(4):1835–1857CrossRefGoogle Scholar
  50. 50.
    Zhu YY, Zacharia T, Cescotto S (1997) Application of fully automatic remeshing to complex metal forming analyses. Comp Struct 62(3):417–427MATHCrossRefGoogle Scholar
  51. 51.
    Gifford LN (1979) More on distorted isoparametric elements. Int J Numer Meth Engng 14:290–291CrossRefGoogle Scholar
  52. 52.
    Babuska I, Zienkiewicz OC, Gago J, Olivera DA (eds) (1986) Accuracy Estimates and Adaptive Refinements in Finite Element Computations, John WileyGoogle Scholar
  53. 53.
    Baker TJ (1989) Automatic mesh generation for complex three-dimensional regions using a constrained delaunay triangulation. Eng Comput 5,:161–175CrossRefGoogle Scholar
  54. 54.
    Zienkiewicz OC, Zhu JZ (1987) A simple error estimator and adaptive procedure for practical engineering analysis. Int J Numer Meth Engng 24:337–357MATHCrossRefMathSciNetGoogle Scholar
  55. 55.
    Oden JT, Demkowicz L, Rachowicz W, Westermann TA (1989) Towards a universal h-p adaptive finite element strategy, part 2. A posteriori error estimation. Comp Meth App Mech Engng 77:113–180MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag France 2010

Authors and Affiliations

  • Abel Cherouat
    • 1
  • Houman Borouchaki
    • 1
  • Laurence Giraud-Moreau
    • 1
  1. 1.UTT- ICD/GAMMA3TroyesFrance

Personalised recommendations