Effect of temperature on anisotropy in forming simulation of aluminum alloys

  • S. Kurukuri
  • A. Miroux
  • M. Ghosh
  • A. H. van den Boogaard
Material behaviour and formability: F. Barlat, D. Banabic, O.Cazacu, T. Kuwabara, L. Delannay

Abstract

A combined experimental and numerical study of the effect of temperature on anisotropy in warm forming of AA 6016-T4 aluminum was performed. The anisotropy coefficients of the Vegter yield function were calculated from crystal plasticity models with an adequate combination of extra slip systems. Curve fitting was used to fit the anisotropy coefficients calculated at discrete temperatures. This temperature dependent constitutive model was successfully applied to the coupled thermo-mechanical analysis of deep drawing of aluminum sheet and results were compared with experiments.

Keywords

warm forming material anisotropy yield function temperature effect 

References

  1. 1.
    D. Li and A. Ghosh. Tensile deformation behavior of aluminum alloys at warm forming temperatures. Mater. Sci. Eng. A., 352:279–286, 2003.CrossRefGoogle Scholar
  2. 2.
    H. Takuda, K. Mori, I. Masuda, Y. Abe and M. Matsuo. Finite element simulation of warm deep drawing of aluminum alloy sheet when accounting heat conduction. J. Mater. Proc. Tech., 120:412–418, 2002.CrossRefGoogle Scholar
  3. 3.
    A.H. van den Boogaard and J. Huétink. Simulation of aluminium sheet forming at elevated temperatures. Comp. Methods in Appl. Mech. and Eng., 195: 6691–6709, 2006.MATHCrossRefGoogle Scholar
  4. 4.
    H. Vegter and A.H. van den Boogaard. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states. Int. J. of Plast. 22:557–580, 2006.MATHCrossRefGoogle Scholar
  5. 5.
    S. Kurukuri, A.H. van den Boogaard, A. Miroux and B. Holmedal. Warm forming simulation of Al-Mg sheet. J. Mater. Proc. Tech., Submitted.Google Scholar
  6. 6.
    M. Merklein,W. Hußnätter and M. Geiger. Characterization of yielding behavior of sheet metal under biaxial stress condition at elevated temperatures. CIRP Annals - Manufact. Tech. 57 (1): 269–274, 2008.CrossRefGoogle Scholar
  7. 7.
    R.A. Lebensohn and C.N. Tomé. A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: Application to zirconium alloys. Acta. Metall. Mater. 41 (9):2611–2624, 1993.CrossRefGoogle Scholar
  8. 8.
    B. Bacroix and J.J. Jonas. The influence of non-octahedral slip on texture development in FCC metals. Textures. Aniso 8 :267–311, 1988.Google Scholar

Copyright information

© Springer/ESAFORM 2009

Authors and Affiliations

  • S. Kurukuri
    • 1
    • 2
    • 4
  • A. Miroux
    • 1
    • 3
  • M. Ghosh
    • 1
    • 3
  • A. H. van den Boogaard
    • 2
  1. 1.Materials Innovation InstituteEnschedeThe Netherlands
  2. 2.Faculty of Engineering TechnologyUniversity of TwenteEnschedeThe Netherlands
  3. 3.Faculty of 3mEDelft University of TechnologyDelftThe Netherlands
  4. 4.EnschedeThe Netherlands

Personalised recommendations