A novel approach for modeling of anisotropic hardening and non proportional loading paths, application to finite element analysis of deep drawing

  • G. Rousselier
  • F. Barlat
  • J. W. Yoon
Material behaviour and formability: F. Barlat, D. Banabic, O.Cazacu, T. Kuwabara, L. Delannay


The modeling of deviations from isotropic hardening is still a difficult task for macroscopic models, in particular for non-proportional loading paths. The alternative polycrystalline models suffer from large CPU time in FE analyses. Due to a specific parameter calibration procedure, a "reduced texture" polycrystalline model with only 8 orientations is in excellent agreement with all experimental curves for a 2090-T3 aluminum sheet. In order to validate the methodology and to evaluate its performance, FE calculations of a deep drawing test have been performed. The CPU time based on the present study is only twice larger than the one with an advanced macroscopic model. The calculated cup heights with six ears are in good agreement with the experimental measurements.


Anisotropic hardening Polycrystalline model Finite element method Sheet forming 


  1. 1.
    Barlat F., Brem J.C., Yoon J.W., Chung K., Dick R.E., Lege D.J., Pourboghrat F., Choi S.H., Chu E.: Plane stress yield function for aluminum alloy sheets - part 1: theory. Int. J. Plasticity, 19:1297-1319, 2003.zbMATHCrossRefGoogle Scholar
  2. 2.
    Barlat F., Aretz H., Yoon J.W., Karabin M.E., Brem J.C., Dick R.E.: Linear transformation-based anisotropic yield functions. Int. J. Plasticity, 21:1009-1039, 2005.zbMATHCrossRefGoogle Scholar
  3. 3.
    Yoon J.W., Barlat F., Dick R.E., Karabin M.E.: Prediction of six or eight ears in a drawn cup based on a new anisotropic yield function. Int. J. Plasticity, 22:174-193, 2006.zbMATHCrossRefGoogle Scholar
  4. 4.
    Bron F., Besson J.: A yield function for anisotropic materials - Application to aluminum alloys. Int. J. Plasticity, 20: 937-963, 2004.zbMATHCrossRefGoogle Scholar
  5. 5.
    Lopes A.B., Barlat, F., Gracio J.J., Ferreira Duarte J.F., Rauch E.F.: Effect of texture and microstructure on strain hardening anisotropy for aluminum deformed in uniaxial tension and simple shear. Int. J. Plasticity, 19:1-22, 2003.Google Scholar
  6. 6.
    Méric L., Poubanne P., Cailletaud G.: Single crystal modeling for structural calculations - Part I: model presentation. J. Engng. Mater. Technol., 113:162-170, 1991.CrossRefGoogle Scholar
  7. 7.
    Sai K., Cailletaud G., Forest S.: Micro-mechanical modeling of the inelastic behavior of directionally solidified materials. Mechanics of Materials, 38:203-217, 2006.CrossRefGoogle Scholar
  8. 8.
    Rousselier G.: Procédé pour déterminer un modèle polycristallin destiné à représenter le comportement d'un matériau solide soumis à une sollicitation mécanique. Demande de brevet d'invention n° 07 03215 du 4 mai 2007.Google Scholar
  9. 9.
    Rousselier G., Barlat F.: Modeling of plastic anisotropy with reduced polycrystalline models. Application to aluminum alloys. In 11th ESAFORM Conference on Material Forming, MS04 paper 17, 2008.Google Scholar

Copyright information

© Springer/ESAFORM 2009

Authors and Affiliations

  1. 1.MINES ParisTech, Centre des MatériauxEvry cedexFrance
  2. 2.Alcoa Technical CenterMaterials Science DivisionAlcoa CenterUSA
  3. 3.Now at Graduate Institute of Ferrous TechnologyPohang University of Science and TechnologyGyeongbukKorea
  4. 4.ENSMPEvry cedexFrance

Personalised recommendations