Application of a response surface method to the optimal design of the wall temperature profiles in extrusion die

Original Research

Abstract

A new approach to the optimal design of the die wall temperature profile in polymer extrusion processes is presented. In this approach, optimization of the design variables is conducted by a Response Surface Method (RSM) and the Sequential Quadratic Programming (SQP) algorithm. Design of experiment (DoE) needed for the construction of the response surface is used to evaluate the objective and the constraint functions on the basis of a finite element method (FEM). Two designs of experiments are used and the performances of the optimization results are compared with respect to efficiency and ability to obtain a global optimum. Typically, for extrusion die design, the objective function states that the average velocity across the die exit is uniform. Constraints are used to limit the pressure drop in the die. For this purpose, we optimize the wall temperature profile of a coat hanger die in a heterogeneous way, (i.e. the wall temperature may not be constant in the entire die). The melt temperature enables us to locally control the viscosity, which influences the flows in the various zones. The effect of the design variables in the objective and constraint functions is investigated using Taguchi method. The flow analysis results are then combined with an automatic optimization algorithm to provide a new profile of the die wall temperature distributions.

Keywords

Optimization DoE Response surface method FEM 

References

  1. 1.
    Nóbrega JM, Carneiro OS, Pinho FT, Oliveira PJ (2004) Flow balancing in extrusion dies for thermoplastic profiles. Int Polym Process 19:225–235Google Scholar
  2. 2.
    Ettinger HJ, Sienz J, Pittman JFT, Polynkin A (2004) Parameterization and optimisation strategies for the automated design of U PVC profile extrusion dies. Struct Multidisc Optim 28:180–194CrossRefGoogle Scholar
  3. 3.
    Michaeli W, Kaul S, Wolff T (2001) Computer aided optimisation of extrusion dies. J Polym Eng 21:225–237Google Scholar
  4. 4.
    Lebaal N, Schmidt F, Puissant S, Schlafli D (2009) Design of optimal extrusion die for a range of different materials. Polym Eng Science 49:432–440CrossRefGoogle Scholar
  5. 5.
    Smith DE (2003) An optimisation-based approach to compute sheeting die designs for multiple operating conditions. SPE ANTEC Tech. Papers, 315–319Google Scholar
  6. 6.
    Wang Y (1991) The flow distribution of molten polymers in slit dies and coat hanger die through three-dimensional finite element analysis. Polym Eng Sci 31:204–212CrossRefGoogle Scholar
  7. 7.
    Vergnes B, Saillard P, Agassant JF (1984) Non-isothermal flow of a molten polymer in a coat-hanger die. Polym Eng Science 24:980–987CrossRefGoogle Scholar
  8. 8.
    Schläfli D (1995) Analysis of polymer flow through coat-hanger melt distributors. Int Polym Process 10:195Google Scholar
  9. 9.
    Vergnes B, Agassant JF (1995) Modélisation des écoulements dans les filières d’extrusion. Techniques de l’Ingénieur, traité Plastiques et Composites, A3 655:1–19Google Scholar
  10. 10.
    Fradette L, Tanguy PA, Thibault F, Sheehy P, Blouin D, Hurez P (1995) Optimal-design in profile extrusion calibration. J Polym Eng 14:295–322Google Scholar
  11. 11.
    Myers RH, Montgomery DC (2002) Response surface methodology, process and product optimization using designed experiments, second editionth edn. Wiley interscience publication, USAMATHGoogle Scholar
  12. 12.
    Montgomery DC (2005) Design and analysis of experiments. John wiley & Sons, INC, USAMATHGoogle Scholar
  13. 13.
    Lebaal N, Puissant S, Schmidt FM (2005) Rheological parameters identification using in-situ experimental data of a flat die extrusion. J Materials Process Tech 164:1524–1529CrossRefGoogle Scholar
  14. 14.
    Kaymaz I (2005) Application of Kriging method to structural reliability problems. Struct Safety 27:133–151CrossRefGoogle Scholar
  15. 15.
    Lebaal N, Schmidt F, Puissant S (2009) Design and optimization of three dimensional extrusion dies, using constraint optimization algorithm. Finite Elem Anal Des 45:333–340CrossRefGoogle Scholar

Copyright information

© Springer/ESAFORM 2009

Authors and Affiliations

  • Nadhir Lebaal
    • 1
  • Stephan Puissant
    • 1
  • Fabrice Schmidt
    • 2
  1. 1.Institut Supérieur d’ingénierie de la conception, GIP-InSIC (ERMeP), Laboratoire d’Energétique et de Mécanique Théorique et Appliquée (LEMTA)Saint-DiéFrance
  2. 2.Université de Toulouse, Institut Clément ADER, Mines Albi, CROMePAlbi Cedex 9France

Personalised recommendations