Fabrication, characterization and mode locking application of single-walled carbon nanotube/polymer composite saturable absorbers

  • F. WangEmail author
  • A. G. Rozhin
  • Z. Sun
  • V. Scardaci
  • R. V. Penty
  • I. H. White
  • A.C. Ferrari
Original Research


We present the fabrication of a high optical quality single-walled carbon nanotubes (SWNTs) polyvinyl alcohol (PVA) composite film. The composites demonstrate strong saturable absorption at ∼1.5 μm, the spectral range for optical communications. By measuring the nonlinear transmission of a sub-picosecond pump pulse through the film, we were able to deduce a saturation fluence of ∼13.9 μJ/cm2 and a modulation depth ∼16.9% (in absorption) at a high pulse fluence ∼200 μJ/cm2. Transient saturable absorption is investigated by measuring the transmitted autocorrelation traces at various incident power levels. Observed side-peak suppression indicates a fast recovery time on the scale of ∼1 ps for our saturable absorber devices. Furthermore, we use these SWNT-PVA composite saturable absorbers as mode-lockers in an Er3+ fiber ring laser and achieve ∼560 fs pulse generation with good jitter performance and long term stability. The laser performance is also associated with the parameters of our SWNT based saturable absorber.


Carbon nanotube Saturable absorber Nonlinear optical properties 



We thank F. Hennrich for providing laser ablation nanotubes. We acknowledge funding from Advance Nanotech Inc., EPSRC grants GR/S97613/01, EP/E500935/1, ETRI Ministry of Information and Communication, Republic of Korea, Project No. A1100-0602-0101, A. C. F. from the Royal Society and The Leverhulme Trust.


  1. 1.
    Bousquet B et al (1996) Collinear pump-probe experiment: a new tool for ultrafast optical dynamics at femtosecond time scale. Quantum Electronics and Laser Science Conference 132–133 Google Scholar
  2. 2.
    Chen Y-C et al (2002) Ultrafast optical switching properties of single-wall carbon nanotube polymer composites at 1.55 mm. Appl Phys Lett 81:975CrossRefGoogle Scholar
  3. 3.
    Dennis ML, Duling IN (1994) Experimental study of sideband generation in femtosecond fibre lasers. IEEE J Quan Electron 30:1469CrossRefGoogle Scholar
  4. 4.
    Garmire E (2000) Resonant optical nonlinearities in semiconductors. IEEE J Sel Top Quantum Electron 6:1094CrossRefGoogle Scholar
  5. 5.
    Goh CS et al (2005) Femtosecond Mode-locking of a Ytterbium-doped fibre laser using a carbon-nanotube-based mode-locker with ultra-wide absorption band. In Conference on Lasers and Electro-Optics (CLEO) (Optical Society of America, 2005), paper CThG2Google Scholar
  6. 6.
    Gordon JP (1992) Dispersion perturbations of solitons of the nonlinear Schrödinger equation. J Opt Soc Am B 9:91CrossRefGoogle Scholar
  7. 7.
    Hennrich F et al (2003) Reversible modification of the absorption properties of single-walled carbon nanotube thin films via nitric acid exposure. Phys Chem Chem Phys 5:178CrossRefGoogle Scholar
  8. 8.
    Il’ichev NN et al (2004) Nonlinear transmission of single-wall carbon nanotubes in heavy water at a wavelength of 1.54 mm and self-mode locking in an Er3+: glass laser obtained using a passive nanotube switch. Quantum Electron 34:572CrossRefGoogle Scholar
  9. 9.
    Lebedkin S et al (2000) Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 40:417CrossRefGoogle Scholar
  10. 10.
    Nakazawa M et al (2006) Polymer saturable absorber materials in the 1.5 mm band using poly-methyl-methacrylate and polystyrene with single-wall carbon nanotubes and their application to a femtosecond laser. Opt Lett 7:915CrossRefGoogle Scholar
  11. 11.
    Okhotnikov O et al (2004) Ultra-fast fibre laser systems based on SESAM technology: new horizons and applications. New J Phys 6:177CrossRefGoogle Scholar
  12. 12.
    Rozhin AG et al (2005) Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol. Chem Phys Lett 405:288Google Scholar
  13. 13.
    Rozhin AG et al (2006) Sub-200-fs pulsed erbium-doped fibre laser using a carbon nanotube-polyvinylalcohol mode locker. Appl Phys Lett 88:051118CrossRefGoogle Scholar
  14. 14.
    Schibli TR et al (2005) Ultrashort pulse-generation by saturable absorber mirrors based on polymer-embedded carbon nanotubes. Opt Exp 13:8025CrossRefGoogle Scholar
  15. 15.
    Set SY et al (2004) Laser mode locking using a saturable absorber incorporating carbon nanotubes. J Lightwave Technol 22:51CrossRefGoogle Scholar

Copyright information

© Springer/ESAFORM 2008

Authors and Affiliations

  • F. Wang
    • 1
    Email author
  • A. G. Rozhin
    • 1
  • Z. Sun
    • 1
  • V. Scardaci
    • 1
  • R. V. Penty
    • 1
  • I. H. White
    • 1
  • A.C. Ferrari
    • 1
  1. 1.Department of EngineeringUniversity of CambridgeCambridgeUK

Personalised recommendations