Advertisement

International Journal of Material Forming

, Volume 1, Supplement 1, pp 1151–1154 | Cite as

Behaviour modelling of aluminium alloy sheet for single point incremental forming

  • N. Decultot
  • V. Velay
  • L. Robert
  • G. Bernhart
  • E. Massoni
Symposium MS17: Incremental forming

Abstract

The aim of this work is to identify behaviour models of an aluminium alloy sheet formed by incremental stamping process by using both numerical simulations (FEM) and experimental procedures. The procedure developed will be used in Single Point Incremental Forming (SPIF) in using several original experimental tests allowing to reproduce loading paths close to those induced in the industrial operations and full-field measurements by 3D-Digital Image Correlation (DIC).

Key words

Incremental forming Numerical simulations 3D-digital image correlation Behaviour models 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T.J. Kim and D.Y. Yang, ‘Improvement of formability for the incremental sheet metal forming process’, International Journal of Mechanical Sciences, 42, (2000), pp. 1271–1286.Google Scholar
  2. 2.
    S. He, A. Van Bael, P. Van Houtte, Y. Tunckol, J. Duflou, C. Henrard, C. Bouffioux, A.M. Habraken, ‘Effect of FEM choices in the modelling of incremental forming of aluminium sheets’, Proc. 8th ESAFORM conf., (2005), Cluj-Napoca, RomaniaGoogle Scholar
  3. 3.
    L. Robert, F. Nazaret, J-J. Orteu, T. Cutard, ‘Use of 3-D Digital Image Correlation to characterize the mechanical behavior of a Fiber Reinforced Refractory Castable’, Experimental Mechanics, 9(11) (2007), pp. 761–773.Google Scholar

Copyright information

© Springer/ESAFORM 2008

Authors and Affiliations

  • N. Decultot
    • 1
  • V. Velay
    • 1
  • L. Robert
    • 1
  • G. Bernhart
    • 1
  • E. Massoni
    • 2
  1. 1.Research Centre on Tools Materials and Processes (CROMeP)ALBI Cedex 9France
  2. 2.Centre for Material Forming (CEMEF)Sophia-AntipolisFrance

Personalised recommendations