Estimation of mechanical properties of polycrystalline microcomponents

  • T. BöhlkeEmail author
  • K. Jöchen
  • D. Löhe
  • V. Schulze
Symposium MS08: Microforming and nanostructured materials


This work deals with the elastic properties of polycrystalline microcomponents made of Gold. Finite element calculations with ABAQUS are carried out so as to identify the characteristic parameters of the distribution of Young’s modulus. In the finite element model, the microstructure of the microspecimens is represented by a periodic Voronoi tessellation and a uniform distribution of single crystal orientations on SO(3). Experimental values of the mean value and the standard deviation of Young’s modulus are compared to predictions of finite element simulations and to the Voigt and the Reuss bound as well as the Hashin-Shtrikman bounds.


Crystallographic Texture Elastic Anisotropy Microcomponents Polycrystals 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Auhorn. Mechanische Eigenschaften urgeformter Mikroproben aus Au58Ag23Cu12Pd5 und ZrO2. PhD thesis, Universität Karlsruhe (TH), 2005.Google Scholar
  2. 2.
    M. Auhorn, B. Kasanická, T. Beck, V. Schulze, and D. Löhe. Mechanical strength and microstructure of Stabilor-G and ZrO2 microspecimens. Microsystem Technologies, 12:713–716, 2006.Google Scholar
  3. 3.
    T. Böhlke. Application of the maximum entropy method in texture analysis. Comp. Mat. Sc., 32:276–283, 2005.Google Scholar
  4. 4.
    T. Böhlke and A. Bertram. The evolution of Hooke’s law due to texture development in polycrystals. Int. J. Solids Struct., 38(52):9437–9459, 2001.Google Scholar
  5. 5.
    T. Böhlke and C. Brüggemann. Graphical representation of the generalized Hooke’s law. Technische Mechanik, 21(2):145–158, 2001.Google Scholar
  6. 6.
    P. Halmos. Finite-Dimensional Vector Spaces. D. van Nostrand Company, Inc., New York, 1958.Google Scholar
  7. 7.
    Z. Hashin and S. Shtrikman. A variational approach to the theory of the elastic behaviour of polycrystals. J. Mech. Phys. Solids, 10:343–352, 1962.Google Scholar
  8. 8.
    S. Hazanov. On apparent properties of nonlinear heterogeneous bodies smaller than the representative volume. Acta Mechanica, 134:123–134, 1999.Google Scholar
  9. 9.
    A. Reuss. Berechnung der Fließgrenze vonMischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. Z. Angew. Math. Mech., 9:49–58, 1929.Google Scholar
  10. 10.
    W. Voigt. Lehrbuch der Kristallphysik. Teubner Leipzig, 1910.Google Scholar

Copyright information

© Springer/ESAFORM 2008

Authors and Affiliations

  1. 1.Universität Karlsruhe (TH), Institut für Technische MechanikKarlsruheGermany
  2. 2.Universität Karlsruhe (TH), Institut für Werkstoffkunde IKarlsruheGermany

Personalised recommendations