Advertisement

Physically based modeling of the mechanical behavior of TRIP steels

  • J. Bouquerel
  • K. Verbeken
  • J. Van Slycken
  • P. Verleysen
  • Y. Houbaert
Symposium MS02: Multiscale approaches
  • 165 Downloads

Abstract

Multiphase TRIP steels offer excellent mechanical properties that result from the composite behaviour of the different phases and the transformation of the austenite phase to martensite. For the development of a physically based micromechanical model, it is of considerable importance to evaluate the contribution of the different phases separately. For this purpose, the different constituent phases were prepared separately, and the stress-strain relationships of the different single phases were simulated taking into account their physical and microstructural properties such as the chemical composition and dislocation density. The static stress-strain properties of multiphase steels were modelled by the successive application of a mixture law. The model also allowed to integrate the strain rate and temperature dependence.

Key words

TRIP steels modelling strain-induced martensite Mecking-Kocks 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. De Meyer, D. Vanderschueren, B.C. De Cooman: The influence of the substitution of Si by Al on the properties of cold rolled C-Mn-Si TRIP steels. ISIJ Int., Vol 39 (1999), p.813Google Scholar
  2. 2.
    A. Perlade, O. Bouaziz, Q. Furnémont: A physically based model for TRIP-aided carbon steels behaviourMater. Sci. Eng, Vol A356 (2003), p.145Google Scholar
  3. 3.
    N. Tsuchida, Y. Tomota, H. Moriya, O. Umezawa, K. Nagai: Application of the Kocks–Mecking model to tensile deformation of an austenitic 25Cr–19Ni steel Acta Mat. Vol49 (2000), p.3029Google Scholar
  4. 4.
    L. Samek, E. De Moor, J. Penning, B.C. De Cooman: Influence of alloying elements on the kinetics of straininduced martensitic nucleation in low-alloy, multiphase high-strength steels. Met. Trans. A, Vol 36A (2006), pp.109-124Google Scholar
  5. 5.
    F.S. Lepera: Improved etching technique for the determination of percent martensite in high-strength dual-phase steels J. Metal. (1980), pp.38-39Google Scholar
  6. 6.
    J. Van Slycken, P. Verleysen, J. Degrieck, J. Bouquerel: Dynamic response of aluminium containg TRIP steels and its different constituents B.C. De Cooman: Mater. Sci. Eng. A, 460–461 (2007) 516–524Google Scholar
  7. 7.
    J. Bouquerel, K. Verbeken and B.C. De Cooman: microstructure based model for the static mechanical behaviour of multiphase steels. Acta Mat, Vol.54 (2006) 1443–1456Google Scholar
  8. 8.
    S. Takeuchi, E. Furubayashi and T.Taoka: Act. Met., Vol 15/7 (1967), pp.1179-1191Google Scholar
  9. 9.
    J. Bouquerel, K. Verbeken, B.C. De Cooman, Y. Houbaert, J. Van Slycken, P. Verleysen: Physical based model static and dynamic behaviour of TRIP steel. Adv. mater. res. 15-17 (2007) pp.744-749Google Scholar
  10. 10.
    J.Bouquerel, K. Verbeken, D. Krizan, L. Barbé, P.Verleysen, Y. Houbaert: Evaluation of the static stressstrain behaviour of phosphorus alloyed and titanium micro-alloyed TRIP steels. Submitted to Steel Res.Google Scholar
  11. 11.
    S. Nemat-Nasser: Plasticity A Treatise of Finite Deformation of Heterogeneous Inelastic Materials, Cambridge University Press. ISBN 0-521-83979-3Google Scholar
  12. 12.
    L.P. Xu, L. Li, X.C. Wei, R.Y. Fu, B.C. De Cooman, P.Wollants, L. Wang and X.D. Zhu: Int. Conf. On TRIPAided High Strength Fer. All.. GRIPS (2000), pp. 367-371. ISBN 3-86130-240-3Google Scholar
  13. 13.
    B.Reichert, Y. Estrin: Modular Modelling of Stress-Strain Behaviour of Ferritic Steel Grades in Strain Rate Ranges Relevant for Automotive Crash Situations. Steel Res. 10-11 (2007) pp.791-793Google Scholar

Copyright information

© Springer/ESAFORM 2008

Authors and Affiliations

  • J. Bouquerel
    • 1
  • K. Verbeken
    • 1
  • J. Van Slycken
    • 2
  • P. Verleysen
    • 2
  • Y. Houbaert
    • 1
  1. 1.Ghent University, Dept of Metallurgy and Materials Science – 9052GhentBelgium
  2. 2.Ghent University, Dept of Mechanical Construction and Production – 9000GhentBelgium

Personalised recommendations