Advertisement

Flow Cytometric Evaluation of Traditional and Novel Surface Markers for the Diagnosis of Plasma Cell Dyscrasias

  • Dominik F. DraxlerEmail author
  • Lisa M. Wutzlhofer
  • Georg Slavka
  • Wolfgang Hübl
  • Heinz Ludwig
  • Martin Schreder
  • John Reynolds
  • Martin Willheim
Original Article
  • 7 Downloads

Abstract

Increasing interest has been expressed for flow cytometric immunophenotyping for diagnosis and monitoring in plasma cell dyscrasias over the last decades. The aim of this investigation was to compare the expression strength of various cell surface markers used traditionally or currently under investigation on normal and abnormal PC populations. We enrolled 295 consecutive patients undergoing bone marrow aspiration in the workup of monoclonal gammopathies, selecting 54 normal and 241 abnormal PC populations via flow cytometry to characterize the expression of CD45, CD38, CD138, CD19, CD56, CD20, CD27, CD28, CD81, CD117 and CD200 on the cell surface of PCs. We observed significant differences in the expression strength of all assessed markers between normal and abnormal PC populations in all markers except for CD20. While none of them was conclusive on its own, the combination of CD81 positivity and CD117 negativity was present in 98.1% of normal PC populations tested. In contrast, particularly CD117 positivity, but also CD81 negativity was indicative of an abnormal PC phenotype. Our results highlight the descriptive value of CD81 and CD117 for the allocation of bone marrow PCs to a normal or abnormal phenotype.

Keywords

Multiple myeloma Plasma cell dyscrasias Plasma cells FACS Flow cytometry 

Abbreviations

mAbs

Monoclonal antibodies

MGUS

Monoclonal gammopathy of undetermined significance

PC

Plasma cell

NK cell

Natural killer cell

Notes

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no conflict of interest with respect to the present manuscript.

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Supplementary material

12288_2019_1105_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 kb)

References

  1. 1.
    Kyle RA, Rajkumar SV (2004) Multiple myeloma. N Engl J Med 18:1860–1873CrossRefGoogle Scholar
  2. 2.
    Rajkumar SV (2013) Multiple myeloma: 2013 update on diagnosis, risk-stratification, and management. Am J Hematol 3:226–235Google Scholar
  3. 3.
    Chesi M, Bergsagel PL (2013) Molecular pathogenesis of multiple myeloma: basic and clinical updates. Int J Hematol 3:313–323CrossRefGoogle Scholar
  4. 4.
    Raja KR, Kovarova L, Hajek R (2010) Review of phenotypic markers used in flow cytometric analysis of MGUS and MM, and applicability of flow cytometry in other plasma cell disorders. Br J Haematol 3:334–351CrossRefGoogle Scholar
  5. 5.
    Palumbo A, Anderson K (2011) Multiple myeloma. N Engl J Med 11:1046–1060CrossRefGoogle Scholar
  6. 6.
    Kyle RA, Rajkumar SV (2008) Multiple myeloma. Blood 6:2962–2972CrossRefGoogle Scholar
  7. 7.
    Raab MS, Podar K, Breitkreutz I, Richardson PG, Anderson KC (2009) Multiple myeloma. Lancet 9686:324–339CrossRefGoogle Scholar
  8. 8.
    Willrich MA, Katzmann JA (2016) Laboratory testing requirements for diagnosis and follow-up of multiple myeloma and related plasma cell dyscrasias. Clin Chem Lab Med 6:907–919Google Scholar
  9. 9.
    Paiva B, Almeida J, Perez-Andres M, Mateo G, Lopez A, Rasillo A et al (2010) Utility of flow cytometry immunophenotyping in multiple myeloma and other clonal plasma cell-related disorders. Cytom B Clin Cytom 4:239–252Google Scholar
  10. 10.
    Tran DN, Smith SA, Brown DA, Parker AJ, Joseph JE, Armstrong N et al (2017) Polychromatic flow cytometry is more sensitive than microscopy in detecting small monoclonal plasma cell populations. Cytom B Clin Cytom 2:136–144CrossRefGoogle Scholar
  11. 11.
    Rawstron AC, Orfao A, Beksac M, Bezdickova L, Brooimans RA, Bumbea H et al (2008) Report of the European Myeloma Network on multiparametric flow cytometry in multiple myeloma and related disorders. Haematologica 3:431–438CrossRefGoogle Scholar
  12. 12.
    Paiva B, Vidriales MB, Rosinol L, Martinez-Lopez J, Mateos MV, Ocio EM et al (2013) A multiparameter flow cytometry immunophenotypic algorithm for the identification of newly diagnosed symptomatic myeloma with an MGUS-like signature and long-term disease control. Leukemia 10:2056–2061CrossRefGoogle Scholar
  13. 13.
    Ocqueteau M, Orfao A, Almeida J, Blade J, Gonzalez M, Garcia-Sanz R et al (1998) Immunophenotypic characterization of plasma cells from monoclonal gammopathy of undetermined significance patients. Implications for the differential diagnosis between MGUS and multiple myeloma. Am J Pathol 6:1655–1665Google Scholar
  14. 14.
    Kobayashi S, Hyo R, Amitani Y, Tanaka M, Hashimoto C, Sakai R et al (2006) Four-color flow cytometric analysis of myeloma plasma cells. Am J Clin Pathol 6:908–915CrossRefGoogle Scholar
  15. 15.
    Harada H, Kawano MM, Huang N, Harada Y, Iwato K, Tanabe O et al (1993) Phenotypic difference of normal plasma cells from mature myeloma cells. Blood 10:2658–2663Google Scholar
  16. 16.
    Robillard N, Avet-Loiseau H, Garand R, Moreau P, Pineau D, Rapp MJ et al (2003) CD20 is associated with a small mature plasma cell morphology and t(11;14) in multiple myeloma. Blood 3:1070–1071CrossRefGoogle Scholar
  17. 17.
    Zandecki M, Facon T, Bernardi F, Izydorczyk V, Dupond L, Francois M et al (1995) CD19 and immunophenotype of bone marrow plasma cells in monoclonal gammopathy of undetermined significance. J Clin Pathol 6:548–552CrossRefGoogle Scholar
  18. 18.
    Guikema JE, Hovenga S, Vellenga E, Conradie JJ, Abdulahad WH, Bekkema R et al (2003) CD27 is heterogeneously expressed in multiple myeloma: low CD27 expression in patients with high-risk disease. Br J Haematol 1:36–43CrossRefGoogle Scholar
  19. 19.
    Katayama Y, Sakai A, Oue N, Asaoku H, Otsuki T, Shiomomura T et al (2003) A possible role for the loss of CD27–CD70 interaction in myelomagenesis. Br J Haematol 2:223–234CrossRefGoogle Scholar
  20. 20.
    Pellat-Deceunynck C, Bataille R, Robillard N, Harousseau JL, Rapp MJ, Juge-Morineau N et al (1994) Expression of CD28 and CD40 in human myeloma cells: a comparative study with normal plasma cells. Blood 8:2597–2603Google Scholar
  21. 21.
    Robillard N, Jego G, Pellat-Deceunynck C, Pineau D, Puthier D, Mellerin MP et al (1998) CD28, a marker associated with tumoral expansion in multiple myeloma. Clin Cancer Res 6:1521–1526Google Scholar
  22. 22.
    Ocqueteau M, Orfao A, Garcia-Sanz R, Almeida J, Gonzalez M, San Miguel JF (1996) Expression of the CD117 antigen (c-Kit) on normal and myelomatous plasma cells. Br J Haematol 3:489–493CrossRefGoogle Scholar
  23. 23.
    Bataille R, Pellat-Deceunynck C, Robillard N, Avet-Loiseau H, Harousseau JL, Moreau P (2008) CD117 (c-kit) is aberrantly expressed in a subset of MGUS and multiple myeloma with unexpectedly good prognosis. Leuk Res 3:379–382CrossRefGoogle Scholar
  24. 24.
    Lin P, Owens R, Tricot G, Wilson CS (2004) Flow cytometric immunophenotypic analysis of 306 cases of multiple myeloma. Am J Clin Pathol 4:482–488CrossRefGoogle Scholar
  25. 25.
    Olteanu H, Harrington AM, Hari P, Kroft SH (2011) CD200 expression in plasma cell myeloma. Br J Haematol 3:408–411CrossRefGoogle Scholar
  26. 26.
    Paiva B, Gutierrez NC, Chen X, Vidriales MB, Montalban MA, Rosinol L et al (2012) Clinical significance of CD81 expression by clonal plasma cells in high-risk smoldering and symptomatic multiple myeloma patients. Leukemia 8:1862–1869CrossRefGoogle Scholar
  27. 27.
    Flores-Montero J, de Tute R, Paiva B, Perez JJ, Bottcher S, Wind H et al (2016) Immunophenotype of normal vs. myeloma plasma cells: toward antibody panel specifications for MRD detection in multiple myeloma. Cytom B Clin Cytom 1:61–72CrossRefGoogle Scholar
  28. 28.
    Porwit A (2013) Immunophenotyping of selected hematologic disorders–focus on lymphoproliferative disorders with more than one malignant cell population. Int J Lab Hematol. 3:275–282CrossRefGoogle Scholar
  29. 29.
    Cannizzo E, Carulli G, Del Vecchio L, Ottaviano V, Bellio E, Zenari E et al (2012) The role of CD19 and CD27 in the diagnosis of multiple myeloma by flow cytometry: a new statistical model. Am J Clin Pathol 3:377–386CrossRefGoogle Scholar
  30. 30.
    Flanders A, Stetler-Stevenson M, Landgren O (2013) Minimal residual disease testing in multiple myeloma by flow cytometry: major heterogeneity. Blood 6:1088–1089CrossRefGoogle Scholar
  31. 31.
    Bataille R, Jego G, Robillard N, Barille-Nion S, Harousseau JL, Moreau P et al (2006) The phenotype of normal, reactive and malignant plasma cells. Identification of “many and multiple myelomas” and of new targets for myeloma therapy. Haematologica 9:1234–1240Google Scholar
  32. 32.
    Pellat-Deceunynck C, Bataille R (2004) Normal and malignant human plasma cells: proliferation, differentiation, and expansions in relation to CD45 expression. Blood Cells Mol Dis 2:293–301CrossRefGoogle Scholar
  33. 33.
    Robillard N, Pellat-Deceunynck C, Bataille R (2005) Phenotypic characterization of the human myeloma cell growth fraction. Blood 12:4845–4848CrossRefGoogle Scholar
  34. 34.
    Moreau P, Robillard N, Jego G, Pellat C, Le Gouill S, Thoumi S et al (2006) Lack of CD27 in myeloma delineates different presentation and outcome. Br J Haematol 2:168–170CrossRefGoogle Scholar
  35. 35.
    Cannizzo E, Bellio E, Sohani AR, Hasserjian RP, Ferry JA, Dorn ME et al (2010) Multiparameter immunophenotyping by flow cytometry in multiple myeloma: The diagnostic utility of defining ranges of normal antigenic expression in comparison to histology. Cytom B Clin Cytom 4:231–238Google Scholar
  36. 36.
    Tohami T, Drucker L, Shapiro H, Radnay J, Lishner M (2007) Overexpression of tetraspanins affects multiple myeloma cell survival and invasive potential. FASEB J 3:691–699CrossRefGoogle Scholar
  37. 37.
    Barrena S, Almeida J, Yunta M, Lopez A, Fernandez-Mosteirin N, Giralt M et al (2005) Aberrant expression of tetraspanin molecules in B-cell chronic lymphoproliferative disorders and its correlation with normal B-cell maturation. Leukemia 8:1376–1383CrossRefGoogle Scholar
  38. 38.
    Luo RF, Zhao S, Tibshirani R, Myklebust JH, Sanyal M, Fernandez R et al (2010) CD81 protein is expressed at high levels in normal germinal center B cells and in subtypes of human lymphomas. Hum Pathol 2:271–280CrossRefGoogle Scholar
  39. 39.
    Tembhare PR, Yuan CM, Venzon D, Braylan R, Korde N, Manasanch E et al (2014) Flow cytometric differentiation of abnormal and normal plasma cells in the bone marrow in patients with multiple myeloma and its precursor diseases. Leuk Res 3:371–376CrossRefGoogle Scholar
  40. 40.
    Alapat D, Coviello-Malle J, Owens R, Qu P, Barlogie B, Shaughnessy JD et al (2012) Diagnostic usefulness and prognostic impact of CD200 expression in lymphoid malignancies and plasma cell myeloma. Am J Clin Pathol 1:93–100CrossRefGoogle Scholar
  41. 41.
    Olteanu H, Harrington AM, Kroft SH (2012) CD200 expression in plasma cells of nonmyeloma immunoproliferative disorders: clinicopathologic features and comparison with plasma cell myeloma. Am J Clin Pathol 6:867–876CrossRefGoogle Scholar
  42. 42.
    Moreaux J, Hose D, Reme T, Jourdan E, Hundemer M, Legouffe E et al (2006) CD200 is a new prognostic factor in multiple myeloma. Blood 13:4194–4197CrossRefGoogle Scholar

Copyright information

© Indian Society of Hematology and Blood Transfusion 2019

Authors and Affiliations

  1. 1.ZentrallaborWilhelminenspital der Stadt WienViennaAustria
  2. 2.I. Medizinische Abteilung, Zentrum für Onkologie, Hämatologie und PalliativmedizinWilhelminenspital der Stadt WienViennaAustria
  3. 3.Department of Epidemiology and Preventive MedicineMonash UniversityMelbourneAustralia

Personalised recommendations