Advertisement

The Effect of Demographic Factors and VKORC1 1639 G>A Genotypes on Estimated Warfarin Maintenance Dose in Iranian Patients Under Warfarin Therapy

  • Fariba Rad
  • Mohsen Hamidpour
  • Akbar Dorgalaleh
  • Behzad PoopakEmail author
Original Article
  • 32 Downloads

Abstract

Warfarin is an anticoagulant that inhibits vitamin K-dependent clotting factors including factor (F) II, FVII, FIX and FX. Different factors can change the effect of this anticoagulant in clinic. Therefore we assessed impact of VKORC1 -1639 G>A polymorphism and demographic factors on required maintenance dose in Iranian patients under warfarin therapy. The study population included 95 patients with a mean age of 61.3 ± 12.6 years. Target INR range of 2–3 was considered for these patients. The frequency of VKORC1 -1639 G>A polymorphism was assessed by polymerase chain reaction-restriction length polymorphism (PCR-RFLP). Finally the obtain data were analyzed by SPSS software. Our study revealed that 30.5%, 49.5%, and 20% of the patients had VKORC1 (G/G), (G/A), and (A/A) genotypes, respectively. Carriers of VKORC1 G/G genotype required a higher warfarin dose as compared to A/A carriers (4.48 ± 1.32 and 2.7 ± 1.16 mg/day, respectively; P < 0.01). In addition, patients with higher age required lower warfarin therapeutic dose (r = − 0.3, P < 0.01). It seems that -1639 G>A polymorphism and demographic variables had significant effects on warfarin maintenance dose in Iranian patients under warfarin therapy.

Keywords

Warfarin Vitamin K epoxide reductase complex subunit 1 Bleeding Thrombosis 

Notes

Acknowledgements

The authors would like to thank Payvand clinical laboratory for supporting our project and Moddares Hospital for their assistance for collected the samples.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflicting interests. Designed the research, analyzed the data, performed the research and wrote the paper, review and final approval of the version to be published.

References

  1. 1.
    Sconce EA, Khan TI, Wynne HA, Avery P, Monkhouse L, King BP et al (2005) The impact of CYP2C9 and VKORC1 genetic polymorphism and patient characteristics upon warfarin dose requirements: proposal for a new dosing regimen. Blood 106(7):2329–2333CrossRefPubMedGoogle Scholar
  2. 2.
    Juurlink DN (2007) Drug interactions with warfarin: what clinicians need to know. Can Med Assoc J 177(4):369–371CrossRefGoogle Scholar
  3. 3.
    Zuo Z, Wo SK, Lo CM, Zhou L, Cheng G, You JH (2010) Simultaneous measurement of S-warfarin, R-warfarin, S-7-hydroxywarfarin and R-7-hydroxywarfarin in human plasma by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 52(2):305–310CrossRefPubMedGoogle Scholar
  4. 4.
    Radwan MA, Bawazeer GA, Aloudah NM, AlQuadeib BT, Aboul-Enein HY (2012) Determination of free and total warfarin concentrations in plasma using UPLC MS/MS and its application to a patient samples. Biomed Chromatogr 26(1):6–11CrossRefPubMedGoogle Scholar
  5. 5.
    Schurgers LJ, Teunissen KJ, Hamulyák K, Knapen MH, Vik H, Vermeer C (2007) Vitamin K-containing dietary supplements: comparison of synthetic vitamin K1 and natto-derived menaquinone-7. Blood 109(8):3279–3283CrossRefPubMedGoogle Scholar
  6. 6.
    Li T, Chang C-Y, Jin D-Y, Lin P-J, Khvorova A, Stafford DW (2004) Identification of the gene for vitamin K epoxide reductase. Nature 427(6974):541–544CrossRefPubMedGoogle Scholar
  7. 7.
    Takahashi H, Wilkinson GR, Nutescu EA, Morita T, Ritchie MD, Scordo MG et al (2006) Different contributions of polymorphisms in VKORC1 and CYP2C9 to intra-and inter-population differences in maintenance dose of warfarin in Japanese, Caucasians and African-Americans. Pharmacogenet Genomics 16(2):101–110CrossRefPubMedGoogle Scholar
  8. 8.
    Whitley HP, Fermo JD, Chumney EC, Brzezinski WA (2007) Effect of patient-specific factors on weekly warfarin dose. Ther Clin Risk Manag 3(3):499PubMedPubMedCentralGoogle Scholar
  9. 9.
    Dang M-TN, Hambleton J, Kayser SR (2005) The influence of ethnicity on warfarin dosage requirement. Ann Pharmacother 39(6):1008–1012CrossRefPubMedGoogle Scholar
  10. 10.
    Walenga J, Adiguzel C (2010) Drug and dietary interactions of the new and emerging oral anticoagulants. Int J Clin Pract 64(7):956–967CrossRefPubMedGoogle Scholar
  11. 11.
    White RH, Beyth RJ, Zhou H, Romano PS (1999) Major bleeding after hospitalization for deep-venous thrombosis. Am J Med 107(5):414–424CrossRefPubMedGoogle Scholar
  12. 12.
    Flockhart DA, O’Kane D, Williams MS, Watson MS, Gage B, Gandolfi R et al (2008) Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genet Med 10(2):139–150CrossRefPubMedGoogle Scholar
  13. 13.
    Morgan CL, McEwan P, Tukiendorf A, Robinson PA, Clemens A, Plumb JM (2009) Warfarin treatment in patients with atrial fibrillation: observing outcomes associated with varying levels of INR control. Thromb Res 124(1):37–41CrossRefPubMedGoogle Scholar
  14. 14.
    Wadelius M, Chen LY, Lindh JD, Eriksson N, Ghori MJ, Bumpstead S et al (2009) The largest prospective warfarin-treated cohort supports genetic forecasting. Blood 113(4):784–792CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A et al (2008) Genetic determinants of response to warfarin during initial anticoagulation. N Engl J Med 358(10):999–1008CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Lesko L (2007) Personalized medicine: elusive dream or imminent reality? Clin Pharmacol Ther 81(6):807–816CrossRefPubMedGoogle Scholar
  17. 17.
    Rost S, Fregin A, Ivaskevicius V, Conzelmann E, Hörtnagel K, Pelz H-J et al (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427(6974):537–541CrossRefPubMedGoogle Scholar
  18. 18.
    D’Andrea G, D’Ambrosio RL, Di Perna P, Chetta M, Santacroce R, Brancaccio V et al (2005) A polymorphism in the VKORC1 gene is associated with an interindividual variability in the dose-anticoagulant effect of warfarin. Blood 105(2):645–649CrossRefPubMedGoogle Scholar
  19. 19.
    Fa Takeuchi, McGinnis R, Bourgeois S, Barnes C, Eriksson N, Soranzo N et al (2009) A genome-wide association study confirms VKORC1, CYP2C9, and CYP4F2 as principal genetic determinants of warfarin dose. PLoS Genet 5(3):e1000433CrossRefGoogle Scholar
  20. 20.
    Huang S-W, Chen H-S, Wang X-Q, Huang L, Xu D-L, Hu X-J et al (2009) Validation of VKORC1 and CYP2C9 genotypes on interindividual warfarin maintenance dose: a prospective study in Chinese patients. Pharmacogenet Genomics 19(3):226–234CrossRefPubMedGoogle Scholar
  21. 21.
    Zhu Y, Shennan M, Reynolds KK, Johnson NA, Herrnberger MR, Valdes R et al (2007) Estimation of warfarin maintenance dose based on VKORC1 (-1639 G>A) and CYP2C9 genotypes. Clin Chem 53(7):1199–1205CrossRefPubMedGoogle Scholar
  22. 22.
    Duconge J, Cadilla CL, Windemuth A, Kocherla M, Gorowski K, Seip RL et al (2009) Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics. Ethn Dis 19(4):390PubMedPubMedCentralGoogle Scholar
  23. 23.
    Khoury G, Sheikh-Taha M (2014) effect of age and sex on warfarin dosing. Clin Pharmacol Adv Appl 6:103Google Scholar
  24. 24.
    Garcia D, Regan S, Crowther M, Hughes RA, Hylek EM (2005) Warfarin maintenance dosing patterns in clinical practice: implications for safer anticoagulation in the elderly population. Chest J 127(6):2049–2056CrossRefGoogle Scholar
  25. 25.
    Yildirim E, Erol K, Birdane A (2014) Warfarin dose requirement in Turkish patients: the influences of patient characteristics and polymorphisms in CYP2C9, VKORC1 and factor VII. Hippokratia 18(4):319–327PubMedPubMedCentralGoogle Scholar
  26. 26.
    Wynne H, Kamali F, Edwards C, Long A, Kelly P (1996) Effect of ageing upon warfarin dose requirements: a longitudinal study. Age Ageing 25(6):429–431CrossRefPubMedGoogle Scholar
  27. 27.
    Blann A, Hewitt J, Siddiqui F, Bareford D (1999) Racial background is a determinant of average warfarin dose required to maintain the INR between 2.0 and 3.0. Br J Haematol 107(1):207–209CrossRefPubMedGoogle Scholar
  28. 28.
    Azarpira N, Namazi S, Hendijani F, Banan M, Darai M (2010) Investigation of allele and genotype frequencies of CYP2C9, CYP2C19 and VKORC1 in Iran. Pharmacol Rep 62(4):740–746CrossRefPubMedGoogle Scholar
  29. 29.
    Samiee SM, Yeganeh SM, Paryan M, Rezvan H, Mostafavi E, Pasalar P (2014) Polymorphism detection of VKORC1 and CYP2C9 genes for warfarin dose adjustment by real-time PCR. Thrita 3(1):e14033CrossRefGoogle Scholar
  30. 30.
    Buzoianu AD, Trifa AP, Mureşanu DF, Crişan S (2012) Analysis of CYP2C9* 2, CYP2C9* 3 and VKORC1-1639 G>A polymorphisms in a population from South-Eastern Europe. J Cell Mol Med 16(12):2919–2924CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Yang L, Ge W, Yu F, Zhu H (2010) Impact of VKORC1 gene polymorphism on interindividual and interethnic warfarin dosage requirement—a systematic review and meta analysis. Thromb Res 125(4):e159–e166CrossRefPubMedGoogle Scholar
  32. 32.
    Scott SA, Edelmann L, Kornreich R, Desnick RJ (2008) Warfarin pharmacogenetics: CYP2C9 and VKORC1 genotypes predict different sensitivity and resistance frequencies in the Ashkenazi and Sephardi Jewish populations. Am J Hum Genet 82(2):495–500CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Scibona P, Redal M, Garfi L, Arbelbide J, Argibay P, Belloso W (2012) Prevalence of CYP2C9 and VKORC1 alleles in the Argentine population and implications for prescribing dosages of anticoagulants. Genet Mol Res 11(1):70–76CrossRefPubMedGoogle Scholar

Copyright information

© Indian Society of Hematology and Blood Transfusion 2018

Authors and Affiliations

  • Fariba Rad
    • 1
  • Mohsen Hamidpour
    • 2
  • Akbar Dorgalaleh
    • 3
    • 4
  • Behzad Poopak
    • 5
    Email author
  1. 1.Cellular and Molecular Research CenterYasuj University of Medical SciencesYasujIran
  2. 2.Department of Hematology and Blood Banking, School of Allied Medical SciencesShahid Beheshti University of Medical SciencesTehranIran
  3. 3.Department of Hematology and Blood TransfusionSchool of Allied Medical Sciences, Iran University of Medical SciencesTehranIran
  4. 4.Iranian Comprehensive Hemophilia CenterTehranIran
  5. 5.School of ParamedicineTehran Medical Branch of Islamic Azad UniversityTehranIran

Personalised recommendations