Laboratory Monitoring of Chronic Myeloid Leukemia in Patients on Tyrosine Kinase Inhibitors

Review Article

Abstract

Chronic Myeloid Leukemia (CML) is a myeloproliferative neoplasm characterized by translocation of genetic material from chromosome 9 to chromosome 22 to form a fusion gene (BCR-ABL1) that is responsible for abnormal tyrosine kinase activity and alteration of various downstream signaling pathways. In addition to morphological diagnosis of CML phase, it is essential to detect BCR-ABL1 fusion by either metaphase cytogenetics or reverse transcriptase polymerase chain reaction that also determines type of mRNA transcript. Once treatment begins, monitoring the response to Tyrosine Kinase Inhibitor (TKI) using standardized techniques and guidelines is important to check for failure of response and thus, plan timely intervention by increasing the dose of TKI or opting for second line TKIs. The goal is to stop evolution of CML to accelerated phase or blast crisis that has poor response to treatment. Also, it is desirable to achieve good outcomes and even treatment free remission in patients of CML on TKI. Thus, molecular monitoring by reverse transcriptase quantitative PCR (RT-qPCR) is done at regular intervals. There are international recommendations and quality control measures to standardize the reporting of fusion gene transcript levels by quantitative PCR (RT-qPCR) in CML to achieve and maintain sensitivity in molecular detection of CML disease burden. Various state-of-the-art molecular techniques have emerged to accurately determine the number of fusion-gene transcript levels. This review highlights various methodologies and their practical implications in management of CML patients on TKI.

keywords

Chronic Myeloid Leukemia Monitoring Tyrosine kinase inhibitors Reverse transcriptase quantitative polymerase chain reaction 

Notes

Acknowledgements

We would like to acknowledge Dr. Rekha Chaubey Ph.D scientist, Dr. Kanwaljeet Singh, M.D and the technical staff of molecular laboratory at department of hematology, AIIMS for their dedicated work and support.

Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict of interest.

Research Involving Human and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Heisterkamp N, Stam K, Groffen J, de Klein A, Grosveld G (1985) Structural organization of the bcr gene and its role in the Ph′ translocation. Nature 315(6022):758–761CrossRefPubMedGoogle Scholar
  2. 2.
    Deininger MW, Goldman JM, Melo JV (2000) The molecular biology of chronic myeloid leukemia. Blood 96(10):3343–3356PubMedGoogle Scholar
  3. 3.
    Konopka JB, Watanabe SM, Witte ON (1984) An alteration of the human c-abl protein in K562 leukemia cells unmasks associated tyrosine kinase activity. Cell 37(3):1035–1042CrossRefPubMedGoogle Scholar
  4. 4.
    Druker BJ, Tamura S, Buchdunger E, Ohno S, Segal GM, Fanning S et al (1996) Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med 2(5):561–566CrossRefPubMedGoogle Scholar
  5. 5.
    Baccarani M, Castagnetti F, Gugliotta G, Rosti G (2015) A review of the European LeukemiaNet recommendations for the management of CML. Ann Hematol 94(S2):141–147CrossRefGoogle Scholar
  6. 6.
    Oehler VG (2013) Update on current monitoring recommendations in chronic myeloid leukemia: practical points for clinical practice. Hematol Am Soc Hematol Educ Program 2013:176–183Google Scholar
  7. 7.
    Melo JV (1996) The diversity of BCR-ABL fusion proteins and their relationship to leukemia phenotype. Blood 88(7):2375–2384PubMedGoogle Scholar
  8. 8.
    Pane F, Frigeri F, Sindona M, Luciano L, Ferrara F, Cimino R et al (1996) Neutrophilic-chronic myeloid leukemia: a distinct disease with a specific molecular marker (BCR/ABL with C3/A2 junction). Blood 88(7):2410–2414PubMedGoogle Scholar
  9. 9.
    O’Brien S, Berman E, Moore JO, Pinilla-Ibarz J, Radich JP, Shami PJ et al (2011) NCCN task force report: tyrosine kinase inhibitor therapy selection in the management of patients with chronic myelogenous leukemia. J Natl Compr Cancer Netw JNCCN 9(Suppl 2):S1–S25CrossRefGoogle Scholar
  10. 10.
    Bauer S, Romvari E (2012) Interpreting molecular monitoring results and international standardization in chronic myeloid leukemia. J Adv Pract Oncol 3(3):151–160PubMedPubMedCentralGoogle Scholar
  11. 11.
    Branford S, Hughes TP, Rudzki Z (1999) Monitoring chronic myeloid leukaemia therapy by real-time quantitative PCR in blood is a reliable alternative to bone marrow cytogenetics. Br J Haematol 107(3):587–599CrossRefPubMedGoogle Scholar
  12. 12.
    Baccarani M, Saglio G, Goldman J, Hochhaus A, Simonsson B, Appelbaum F et al (2006) Evolving concepts in the management of chronic myeloid leukemia: recommendations from an expert panel on behalf of the European LeukemiaNet. Blood 108(6):1809–1820CrossRefPubMedGoogle Scholar
  13. 13.
    Baccarani M, Cortes J, Pane F, Niederwieser D, Saglio G, Apperley J et al (2009) Chronic myeloid leukemia: an update of concepts and management recommendations of European LeukemiaNet. J Clin Oncol Off J Am Soc Clin Oncol 27(35):6041–6051CrossRefGoogle Scholar
  14. 14.
    Testoni N, Marzocchi G, Luatti S, Amabile M, Baldazzi C, Stacchini M et al (2009) Chronic myeloid leukemia: a prospective comparison of interphase fluorescence in situ hybridization and chromosome banding analysis for the definition of complete cytogenetic response: a study of the GIMEMA CML WP. Blood 114(24):4939–4943CrossRefPubMedGoogle Scholar
  15. 15.
    Hughes T, Deininger M, Hochhaus A, Branford S, Radich J, Kaeda J et al (2006) Monitoring CML patients responding to treatment with tyrosine kinase inhibitors: review and recommendations for harmonizing current methodology for detecting BCR-ABL transcripts and kinase domain mutations and for expressing results. Blood 108(1):28–37CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Baccarani M, Castagnetti F, Gugliotta G, Palandri F, Soverini S (2009) Response definitions and European Leukemianet Management recommendations. Best Pract Res Clin Haematol 22(3):331–341CrossRefPubMedGoogle Scholar
  17. 17.
    Kantarjian H, Schiffer C, Jones D, Cortes J (2008) Monitoring the response and course of chronic myeloid leukemia in the modern era of BCR-ABL tyrosine kinase inhibitors: practical advice on the use and interpretation of monitoring methods. Blood 111(4):1774–1780CrossRefPubMedGoogle Scholar
  18. 18.
    Baccarani M, Deininger MW, Rosti G, Hochhaus A, Soverini S, Apperley JF et al (2013) European LeukemiaNet recommendations for the management of chronic myeloid leukemia: 2013. Blood 122(6):872–884CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    National Comprehensive Cancer Network®, NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®); Chronic Myelogenous Leukemia, Version 4.2018Google Scholar
  20. 20.
    Chikkodi SV, Malhotra P, Naseem S, Khadwal A, Prakash G, Sahu KK et al (2015) Factors affecting early molecular response in chronic myeloid leukemia. Clin Lymphoma Myeloma Leuk 15(Suppl):S114–S119CrossRefPubMedGoogle Scholar
  21. 21.
    Jabbour E, Kantarjian H (2018) Chronic myeloid leukemia: 2018 update on diagnosis, therapy and monitoring. Am J Hematol 93(3):442–459CrossRefPubMedGoogle Scholar
  22. 22.
    Mahon F-X (2017) Treatment-free remission in CML: who, how, and why? Hematol Am Soc Hematol Educ Program 2017(1):102–109Google Scholar
  23. 23.
    Gambacorti-Passerini CB, Gunby RH, Piazza R, Galietta A, Rostagno R, Scapozza L (2003) Molecular mechanisms of resistance to imatinib in Philadelphia-chromosome-positive leukaemias. Lancet Oncol 4(2):75–85CrossRefPubMedGoogle Scholar
  24. 24.
    Redaelli S, Mologni L, Rostagno R, Piazza R, Magistroni V, Ceccon M et al (2012) Three novel patient-derived BCR/ABL mutants show different sensitivity to second and third generation tyrosine kinase inhibitors. Am J Hematol 87(11):E125–E128CrossRefPubMedGoogle Scholar
  25. 25.
    Quintás-Cardama A, Cortes J (2009) Molecular biology of bcr-abl1-positive chronic myeloid leukemia. Blood 113(8):1619–1630CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Deininger MW (2015) Molecular monitoring in CML and the prospects for treatment-free remissions. ASH Educ Program Book 2015(1):257–263Google Scholar
  27. 27.
    Branford S, Fletcher L, Cross NCP, Müller Martin C, Hochhaus A, Kim D-W et al (2008) Desirable performance characteristics for BCR-ABL measurement on an international reporting scale to allow consistent interpretation of individual patient response and comparison of response rates between clinical trials. Blood 112(8):3330–3338CrossRefPubMedGoogle Scholar
  28. 28.
    Weisser M, Haferlach T, Schoch C, Hiddemann W, Schnittger S (2004) The use of housekeeping genes for real-time PCR-based quantification of fusion gene transcripts in acute myeloid leukemia. Leukemia 18(9):1551–1553CrossRefPubMedGoogle Scholar
  29. 29.
    Beillard E, Pallisgaard N, van der Velden VHJ, Bi W, Dee R, van der Schoot E et al (2003) Evaluation of candidate control genes for diagnosis and residual disease detection in leukemic patients using “real-time” quantitative reverse-transcriptase polymerase chain reaction (RQ-PCR)—a Europe against cancer program. Leukemia 17(12):2474–2486CrossRefPubMedGoogle Scholar
  30. 30.
    Cross NCP, White HE, Colomer D, Ehrencrona H, Foroni L, Gottardi E et al (2015) Laboratory recommendations for scoring deep molecular responses following treatment for chronic myeloid leukemia. Leukemia 29(5):999–1003CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Foroni L, Wilson G, Gerrard G, Mason J, Grimwade D, White HE et al (2011) Guidelines for the measurement of BCR-ABL1 transcripts in chronic myeloid leukaemia: guideline. Br J Haematol 153(2):179–190CrossRefPubMedGoogle Scholar
  32. 32.
    Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55(4):611–622CrossRefPubMedGoogle Scholar
  33. 33.
    Gabert J, Beillard E, van der Velden VHJ, Bi W, Grimwade D, Pallisgaard N et al (2003) Standardization and quality control studies of “real-time” quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia—a Europe against cancer program. Leukemia 17(12):2318–2357CrossRefPubMedGoogle Scholar
  34. 34.
    Soverini S, De Benedittis C, Mancini M, Martinelli G (2016) Present and future of molecular monitoring in chronic myeloid leukaemia. Br J Haematol 173(3):337–349CrossRefPubMedGoogle Scholar
  35. 35.
    Jennings LJ, George D, Czech J, Yu M, Joseph L (2014) Detection and quantification of BCR-ABL1 fusion transcripts by droplet digital PCR. J Mol Diagn JMD 16(2):174–179CrossRefPubMedGoogle Scholar
  36. 36.
    Cayuela J-M, Macintyre E, Darlington M, Abdelali RB, Fund X, Villarese P (2011) Cartridge-based automated BCR-ABL1 mRNA quantification: solving the issues of standardization, at what cost? Haematologica 96(5):664–671CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Enjeti A, Granter N, Ashraf A, Fletcher L, Branford S, Rowlings P et al (2015) A longitudinal evaluation of performance of automated BCR-ABL1 quantitation using cartridge-based detection system. Pathology (Phila) 47(6):570Google Scholar

Copyright information

© Indian Society of Hematology and Blood Transfusion 2018

Authors and Affiliations

  1. 1.Department of HematologyAll India Institute of Medical Sciences (AIIMS)New DelhiIndia

Personalised recommendations