Skip to main content
Log in

Nanostructural Changes in the Cell Membrane of Gamma-Irradiated Red Blood Cells

  • Original Article
  • Published:
Indian Journal of Hematology and Blood Transfusion Aims and scope Submit manuscript

Abstract

The effect of gamma radiation on the ultrastructure of the cell membranes of red blood cells has been probed using a powerful tool, namely, atomic force microscopy. We used mice erythrocytes as a model. Blood samples withdrawn from mice were gamma-irradiated using a 60Co source unit with doses of 10,15,20,25 and 30 Gy. Structural changes appeared in the form of nanoscale potholes, depressions and alterations of the cell membrane roughness. The roughness of the cell membrane increased dramatically with increasing doses, although at 10 Gy , the cell membrane roughness was less than that of normal red blood cells (controls). Therefore, such modifications at the nano-scale level may affect the biophysical properties of membranes, resulting in impairment of their function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reiser H, Stadecker MJ (1996) Costimulatory B7 molecules in the pathogenesis of infectious and autoimmune diseases. N Engl J Med 335(18):1369–1377. doi:10.1056/NEJM199610313351807

    Article  CAS  PubMed  Google Scholar 

  2. Button LN, DeWolf WC, Newburger PE, Jacobson MS, Kevy SV (1981) The effects of irradiation on blood components. Transfusion 21(4):419–426. doi:10.1046/j.1537-2995.1981.21481275998.x

    Article  CAS  PubMed  Google Scholar 

  3. Williamson LM, Warwick RM (1995) Transfusion-associated graft-versus-host disease and its prevention. Blood Rev 9(4):251–261. doi:10.1016/S0268-960X(95)90016-0

    Article  CAS  PubMed  Google Scholar 

  4. Hart S, Cserti-Gazdewich C, McCluskey S (2015) Red cell transfusion and the immune system. Anaesthesia 70(s1):38-e16

    Google Scholar 

  5. Xu D, Peng M, Zhang Z, Dong G, Zhang Y, Yu H (2012) Study of damage to red blood cells exposed to different doses of gamma-ray irradiation. Blood Transfus 10:321–330

    PubMed  PubMed Central  Google Scholar 

  6. Maia G, de Oliveira Renó C, Medina J, da Silveira A, Mignaco J, Atella G et al (2014) The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol 93(5):753–760. doi:10.1007/s00277-013-1944-5

    Article  CAS  PubMed  Google Scholar 

  7. Olivo RA, da Silva MV, Garcia FB, Soares S, Rodrigues Junior V, Moraes-Souza H (2015) Evaluation of the effectiveness of packed red blood cell irradiation by a linear accelerator. Revista Brasileira de Hematologia e Hemoterapia 37(3):153–159. doi:10.1016/j.bjhh.2015.03.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hirayama J, Abe H, Azuma H, Ikeda H (2005) Leakage of potassium from red blood cells following gamma ray irradiation in the presence of dipyridamole, trolox, human plasma or mannitol. Biol Pharm Bull 28(7):1318

    Article  CAS  PubMed  Google Scholar 

  9. Dinning G, Doughty R, Reid M, Lloyd H (1991) Potassium concentrations in irradiated blood. BMJ 303(6810):1110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Barjas-Castro M, Brandao M, Fontes A, Costa F, Cesar C, Saad S (2002) Elastic properties of irradiated RBCs measured by optical tweezers. Transfusion 42(9):1196–1199

    Article  CAS  PubMed  Google Scholar 

  11. Brugnara C, Churchill W (1992) Effect of irradiation on red cell cation content and transport. Transfusion 32(3):246–252

    Article  CAS  PubMed  Google Scholar 

  12. Jacobs GP (1998) A review on the effects of ionizing radiation on blood and blood components. Radiat Phys Chem 53(5):511–523. doi:10.1016/S0969-806X(98)00185-6

    Article  CAS  Google Scholar 

  13. Fournier J-B, Lacoste D, Raphaël E (2004) Fluctuation spectrum of fluid membranes coupled to an elastic meshwork: jump of the effective surface tension at the mesh size. Phys Rev Lett 92(1):018102

    Article  PubMed  Google Scholar 

  14. Anand A, Dzik W, Imam A, Sadrzadeh S (1997) Radiation-induced red cell damage: role of reactive oxygen species. Transfusion 37(2):160–165

    Article  CAS  PubMed  Google Scholar 

  15. Adams F, Bellairs G, Bird AR, Oguntibeju OO (2015) Biochemical storage lesions occurring in nonirradiated and irradiated red blood cells: a brief review. BioMed Res Int 2015:8. doi:10.1155/2015/968302

    Article  Google Scholar 

  16. Shi Y, Li R-y Tu, Z-c Ma D, Wang H, X-q Huang et al (2015) Effect of γ-irradiation on the physicochemical properties and structure of fish myofibrillar proteins. Radiat Phys Chem 109:70–72

    Article  CAS  Google Scholar 

  17. Winter K, Johnson L, Kwok M, Reid S, Alarimi Z, Wong J et al (2014) Understanding the effects of gamma-irradiation on potassium levels in red cell concentrates stored in SAG-M for neonatal red cell transfusion. Vox Sang 108:141–150

    Article  PubMed  Google Scholar 

  18. Chadwick K, Leenhouts H (2014) Radiation risk is linear with dose at low doses. Br J Radiol 78:8–10

    Article  Google Scholar 

  19. Kim Y-K, Kwon E-H, Kim D-H, Won D-I, Shin S, Suh J-S (2008) Susceptibility of oxidative stress on red blood cells exposed to gamma rays: hemorheological evaluation. Clin Hemorheol Microcirc 40(4):315–324

    CAS  PubMed  Google Scholar 

  20. Anand AJ, Dzik WH, Imam A, Sadrzadeh SMH (1997) Radiation-induced red cell damage: role of reactive oxygen species. Transfusion 37(2):160–165. doi:10.1046/j.1537-2995.1997.37297203518.x

    Article  CAS  PubMed  Google Scholar 

  21. Relevy H, Koshkaryev A, Manny N, Yedgar S, Barshtein G (2008) Blood banking-induced alteration of red blood cell flow properties. Transfusion 48(1):136–146. doi:10.1111/j.1537-2995.2007.01491.x

    PubMed  Google Scholar 

  22. Zachée P, Snauwaert J, Vandenberghe P, Hellemans L, Boogaerts M (1996) Imaging red blood cells with the atomic force microscope. Br J Haematol 95(3):472–481. doi:10.1111/j.1365-2141.1996.tb08991.x

    Article  PubMed  Google Scholar 

  23. Maia GAS, de Oliveira Renó C, Medina JM, da Silveira AB, Mignaco JA, Atella GC et al (2014) The effect of gamma radiation on the lipid profile of irradiated red blood cells. Ann Hematol 93(5):753–760

    Article  CAS  PubMed  Google Scholar 

  24. Asgary S, Naderi G, Ghannady A (2005) Effects of cigarette smoke, nicotine and cotinine on red blood cell hemolysis and their-SH capacity. Exp Clin Cardiol 10(2):116

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Edwards R, Peet M, Shay J, Horrobin D (1998) Omega-3 polyunsaturated fatty acid levels in the diet and in red blood cell membranes of depressed patients. J Affect Disord 48(2–3):149–155. doi:10.1016/S0165-0327(97)00166-3

    Article  CAS  PubMed  Google Scholar 

  26. Wu D, Cederbaum AI (2003) Alcohol, oxidative stress, and free radical damage. Alcohol Res Health 27:277–284

    PubMed  Google Scholar 

  27. Chiu DT, Huang T-M, Hung I-J, Wei J-S, Liu T, Stern A (1997) Hemin-induced membrane sulfhydryl oxidation: possible involvement of thiyl radicils. Free Radical Res 27(1):55–62

    Article  CAS  Google Scholar 

  28. Chiu DT-Y, Van Den Berg J, Kuypers FA, Hung I-J, Wei J-S, Liu T-Z (1996) Correlation of membrane lipid peroxidation with oxidation of hemoglobin variants: possibly related to the rates of hemin release. Free Radic Biol Med 21(1):89–95. doi:10.1016/0891-5849(96)00035-4

    Article  CAS  PubMed  Google Scholar 

  29. Kozlova E, Chernysh A, Moroz V, Gudkova O, Sergunova V, Kuzovlev A (2014) Transformation of membrane nanosurface of red blood cells under hemin action. Sci Rep 4:6033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shaklai N, Avissar N, Rabizadeh E, Shaklai M (1986) Disintegration of red cell membrane cytoskeleton by hemin. Biochem Int 13(3):467–477

    CAS  PubMed  Google Scholar 

  31. Agarwal P, Ray V, Choudhury N, Chaudhary R (2005) Effect of pre-storage gamma irradiation on red blood cells. Indian J Med Res 122(5):385

    CAS  PubMed  Google Scholar 

  32. Benderitter M, Vincent-Genod L, Pouget J, Voisin P (2009) The cell membrane as a biosensor of oxidative stress induced by radiation exposure: a multiparameter investigation. Radiat Res 159:471–483

    Article  Google Scholar 

  33. Hattingh J, Smith EM (1976) Anticoagulants for avian and reptilian blood: heparin and EDTA. Pflug Arch 363(3):267–269. doi:10.1007/bf00594613

    Article  CAS  Google Scholar 

  34. Muro J, Cuenca R, Pastor J, Vinas L, Lavin S (1998) Effects of lithium heparin and tripotassium EDTA on hematologic values of Hermann’s tortoises (Testudo hermanni). J Zoo Wildl Med 29:40–44

    CAS  PubMed  Google Scholar 

  35. Walencik J, Witeska M (2007) The effects of anticoagulants on hematological indices and blood cell morphology of common carp (Cyprinus carpio L.). Comp Biochem Physiol C: Toxicol Pharmacol 146(3):331–335

    Google Scholar 

  36. Maqbool A, Ahmed I, Sheikh ZA (2013) Effects of two commonly used anticoagulants on haematology and erythrocyte morphology of rainbow trout (Oncorhynchus mykiss). Int J Fish Aquat Stud 2:239–243

    Google Scholar 

Download references

Acknowledgments

This work was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalid AlZahrani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and institutional guidelines for the care and use of animals were followed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AlZahrani, K., Al-Sewaidan, H. Nanostructural Changes in the Cell Membrane of Gamma-Irradiated Red Blood Cells. Indian J Hematol Blood Transfus 33, 109–115 (2017). https://doi.org/10.1007/s12288-016-0657-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12288-016-0657-z

Keywords

Navigation