Advertisement

Sports Engineering

, 22:18 | Cite as

Measuring temporal and spatial accuracy in trampolining

  • Katja FergerEmail author
  • Michel Hackbarth
  • Max D. Mylo
  • Carsten Müller
  • Karen Zentgraf
Technical Note
Part of the following topical collections:
  1. Measuring Behavior in Sport and Exercise

Abstract

A new measurement system (horizontal displacement, time of flight, synchronicity—HDTS) was investigated regarding the latest changes to the international evaluation rules in trampoline gymnastics. It allows for the real-time measurement of objective criteria, such as flight time and landing position, without affecting the gymnast. The aim of this study was to investigate the temporal and spatial accuracy of a measurement tool via cross-validation. Temporal precision was additionally tested via high-speed video landing and takeoff, while a three-dimensional motion capturing system was incorporated for spatial precision. The Bland–Altman “limit of agreement approach” was used for the assessment of congruence between the measurement systems. The new measurement system presented an average spatial deviation of 3.2 cm and a temporal deviation between − 5.8 and + 6.4 ms for the landing and − 11.3 and + 11.3 ms for the takeoff. Given its temporal and spatial accuracy in determining flight time and landing position as identified through cross-validation, the novel HDTS system proved to be suitable for its use in trampoline competitions.

Keywords

Trampolining Measurement device Accuracy Limit of agreement 

Notes

Acknowledgements

We thank Dr. Marc H.E. de Lussanet for contributing to this work by supporting in the measurements and the video analyses. Our thanks go to Johannes Maier, General Management Eurotramp (Weilheim a.d. Teck, Germany) for the provision of the trampoline. Funding was provided by Bundesministerium für Wirtschaft und Energie (Grant No. ZF4068601RE5).

Compliance with ethical standards

Conflict of interest

Dr. Ferger reports grants from Federal Ministry of Economics and Energy, during the conduct of the study; In addition, Dr. Ferger has a patent “Force measuring system for trampoline” 14175727.8/Az. E-DE 114 2 0214/ED licensed. All the other authors have nothing to disclose.

References

  1. 1.
    Stidwill TJ, Turcotte RA, Dixon P, Pearsall DJ (2009) Force transducer system for measurement of ice hockey skating force. Sports Eng 12(2):63–68.  https://doi.org/10.1007/s12283-009-0033-4 CrossRefGoogle Scholar
  2. 2.
    Lipps DB, Galecki AT, Ashton-Miller JA (2011) On the implications of a sex difference in the reaction times of sprinters at the Beijing olympics. PLoS ONE 6(10):e26141.  https://doi.org/10.1371/journal.pone.0026141 CrossRefGoogle Scholar
  3. 3.
    Lynx System Developers: The FinishLYNX Gold Package (2017) Datasheet and instructions. http://www.finishlynx.com/download/marketing-documents/cycling-packages/Road_Cycling_-_Gold_info.pdf. Assessed 1 March 2019
  4. 4.
    Swiss Timing LTD: Swiss Timing. Video distance measurement. Datasheet and instructions. https://www.swisstiming.com/fileadmin/Resources/Data/Datasheets/DOCM_SJ_VDMS_1215_EN.pdf. Assessed 1 March 2019
  5. 5.
    Collins H, Evans R (2008) You cannot be serious! Public understanding of technology with special reference to “Hawk-Eye”. Public Underst Sci 17(3):283–308.  https://doi.org/10.1177/0963662508093370 CrossRefGoogle Scholar
  6. 6.
    Bal B, Dureja G (2012) Hawk eye: a logical innovative technology use in sports for effective decision making. Sport Sci Rev 21(1–2):107–119.  https://doi.org/10.2478/v10237-012-0006-6 CrossRefGoogle Scholar
  7. 7.
    Fowler SC (2012) How feasible is officiating technology in football? Interactive multimedia conference’13, 1, 2013, Southampton, UK. https://pdfs.semanticscholar.org/908c/7a96ffc733d4181e21da007b7240780618fc.pdf. Accessed 1 Mar 2019
  8. 8.
    FIG: Fédération Internationale de Gymnastique – Executive Committee. 2017–2020 Code of Points. http://www.fig-gymnastics.com/publicdir/rules/files/en_TRA%20CoP%202017-2020.pdf. Accessed 13 Aug 2018
  9. 9.
    Acrosport Co. Ltd. Time Measurement Device (TMD-3). Datasheet and instructions. http://acrosport.ru/files/TMD-3_datasheet_en.pdf. Accessed 6 Sept 2017
  10. 10.
    Ferger K, Zangh H, Kölzer S, Tiefenbacher K, Müller H (2013) Time of Flight – ein objektives Bewertungskriterium im Trampolinturnen? [Time of flight – an objective evaluation criterion in trampolining?]. In: Pott-Klindworth M, Pilz T (eds) Turnen – eine Bewegungskultur im Wandel, vol 231. Feldhaus Edition Czwalina, Hamburg, pp 11–20Google Scholar
  11. 11.
    Eisele A, Wyttenbach J, Kredel R, Riehle H (2015) Vergleich zweier Flugzeitmessgeräte für den Trampolinsport. In: Arampatzis (ed) Active Health: Bewegung ist gesund, p. 109Google Scholar
  12. 12.
    Ferger K, Hackbarth M (2017) New way of determining horizontal displacement in competitive trampolining. Sci Gymnast J 9(2):303–310Google Scholar
  13. 13.
    Lenk C, Hackbarth M, Mylo M, Wiegand J, Ferger K (2017) Evaluation eines Messsystems für die Flugzeitbestimmung im Trampolinsport. In: Fichtner I (ed) Technologien im Leistungssport 2: Schriftenreihe für angewandte Trainingswissenschaft, vol 6. Meyer & Meyer Sport, Aachen, pp 75–79Google Scholar
  14. 14.
    Lenk C, Hackbarth M, Mylo M, Wiegand J, Ferger K (2016) Evaluation of a measurement system for determining flight times in trampoline sports. In: Wiemeyer J, Seyfarth A, Kollegger G et al (eds) Human movement and technology: book of abstracts—11th joint conference on motor control and learning, biomechanics and training, vol 1. Shaker Verlag GmbH, AachenGoogle Scholar
  15. 15.
    Lenk C, Mylo M, Ferger K (2017) Evaluation eines Messystems zur Bestimmung der Flugzeit und Landepunkte im Trampolinturnen. In: Korban S, Brams M, Hennig L, Heinen T (eds) Vielfalt und Vernetzung im Turnen: Jahrestagung der dvs-Kommission Gerätturnen vom 5.-7. September 2016 in Augsburg, Feldhaus Edition Czwalina, Schriften der Deutschen Vereinigung für Sportwissenschaft, Hamburg, vol 264, pp 27–40Google Scholar
  16. 16.
    van Stralen KJ, Jager KJ, Zoccali C, Dekker FW (2008) Agreement between methods. Kidney Int 74(9):1116–1120CrossRefGoogle Scholar
  17. 17.
    Chatburn RL (1996) Evaluation of instrument error and method agreement. AANA J 64(3):261–268Google Scholar
  18. 18.
    Harris EF, Smith RN (2009) Accounting for measurement error: a critical but often overlooked process. Arch Oral Biol 54(Suppl 1):107–117CrossRefGoogle Scholar
  19. 19.
    Atkinson G, Nevill AM (1998) Statistical methods for assessing measurement error (reliability) in variables relevant to sports medicine. Sports Med 26(4):217–238CrossRefGoogle Scholar
  20. 20.
    Bland JM, Altman DG (1999) Measuring agreement in method comparison studies. Stat Methods Med Res 8(2):135–160CrossRefGoogle Scholar
  21. 21.
    Bunce C (2009) Correlation, agreement, and Bland–Altman analysis: statistical analysis of method comparison studies. Am J Ophthalmol 148(1):4–6CrossRefGoogle Scholar
  22. 22.
    MATLAB. Version 8.2.0.29 (R2013b) (2013) The MathWorks Inc, Natick, MassachusettsGoogle Scholar
  23. 23.
    FIG: Fédération Internationale de Gymnastique. Apparatus norms: part II. http://www.fig-gymnastics.com/publicdir/rules/files/en_Apparatus%20Norms.pdf. Accessed 13 Aug 2018
  24. 24.
    FIG: Fédération Internationale de Gymnastique. Apparatus norms: part IV. http://www.fig-gymnastics.com/publicdir/rules/files/en_Apparatus%20Norms.pdf. Accessed 13 Aug 2018

Copyright information

© International Sports Engineering Association 2019

Authors and Affiliations

  1. 1.Department of Training Science, Institute of Sport ScienceJustus-Liebig University GießenGiessenGermany
  2. 2.Plant Biomechanics GroupUniversity of FreiburgFreiburgGermany
  3. 3.Institute of Sport and Exercise SciencesUniversity of MuensterMünsterGermany
  4. 4.University SportsUniversity of MuensterMünsterGermany
  5. 5.Movement and Training Science, Institute for Sports SciencesGoethe-University FrankfurtFrankfurtGermany

Personalised recommendations