Impact attenuation provided by shin guards for field hockey

  • Wan Syazehan Ruznan
  • Raechel M. Laing
  • Bronwyn J. Lowe
  • Cheryl A. Wilson
Original Article

Abstract

Low-energy impact testing of hockey shin guards was carried out using a drop test impact rig and a new physical setup protocol. Two brands of shin guards were impacted once (2.6 J, 3.3 J; without and with a sock), and impacted three times (3.3 J; with a sock). The peak force and impulse of a single impact increased with increasing impact energy (by approximately 30 and 7%, respectively) whilst repeated impacts increased the peak force and decreased the impulse (by approximately 70 and 3–9%, respectively, between one and three impact events). The presence of a sock attenuated impact force to a greater extent than the guards alone, at both impact energies. As a sock is usually worn over hockey shin guards, its presence contributes to enhanced protection to the lower limb.

Keywords

Shin guards Sock layer Single impact Repeated impacts Maximum force Impulse Visual damage 

References

  1. 1.
    Parkkari J, Kujala UM, Kannus P (2001) Is it possible to prevent sports injuries? Review of controlled clinical trials and recommendations for future works. Sports Med 31(14):985–995CrossRefGoogle Scholar
  2. 2.
    Schiff MA, Caine DJ, O’Halloran R (2010) Injury prevention in sports. Am J Lifestyle Med 4(1):42–64CrossRefGoogle Scholar
  3. 3.
    Vriend I, Valkenberg H, Schoots W, Goudswaard GJ, Van der Meulen WJ, Backx FJG (2014) Shinguards effective in preventing lower leg injuries in football: population-based trend analyses over 25 years. J Sci Med Sport 18(5):518–522CrossRefGoogle Scholar
  4. 4.
    Velani N, Wilson O, Halkon BJ, Harland AR (2012) Measuring the risk of sustaining injury in sport a novel approach to aid the re-design of personal protective equipment. Appl Ergon 43(5):883–890CrossRefGoogle Scholar
  5. 5.
    Theilen T-M, Mueller-Eising W, Bettink PW, Rolle U (2016) Injury data of major international field hockey tournaments. Br Med J 50(11):657–660CrossRefGoogle Scholar
  6. 6.
    Backx FJG, Erich WBM, Kemper ABA, Verbeek ALM (1989) Sports injuries in school-aged children: an epidemiologic study. Am J Sports Med 17(2):234–240CrossRefGoogle Scholar
  7. 7.
    Murtaugh K (2001) Injury patterns among female field hockey players. Med Sci Sports Exerc 33(2):201–207CrossRefGoogle Scholar
  8. 8.
    Podgórski T, Pawlak M (2011) A half century of scientific research in field hockey. Hum Mov 12(2):108–123Google Scholar
  9. 9.
    Murphy DF, Connolly DAJ, Beynnon BD (2003) Risk factors for lower extremity injury: a review of the literature. Br J Sports Med 37(1):13–29CrossRefGoogle Scholar
  10. 10.
    Boden BP (1998) Leg injuries and shin guards. Clin Sports Med 17(4):769–777MathSciNetCrossRefGoogle Scholar
  11. 11.
    Boden BP, Lohnes JH, Nunley JA, Garrett WE Jr (1999) Tibia and fibula fractures in soccer players. Knee Surg Sports Traumatol Arthrosc 7(4):262–266CrossRefGoogle Scholar
  12. 12.
    Cattermole HR, Hardy JRW, Gregg PJ (1996) The footballer’s fracture. Br J Sports Med 30(2):171–175CrossRefGoogle Scholar
  13. 13.
    Francisco AC, Nightingale RW, Guilak F, Glisson RR, Garrett WE (2000) Comparison of soccer shin guards in preventing tibia fracture. Am J Sports Med 28(2):227–233CrossRefGoogle Scholar
  14. 14.
    Nyquist GW, Cheng R, El-Bohy AAR, King AI (1985) Tibia bending: strength and response. SAE Technical Paper 851728. The Society of Automotive Engineers, New YorkGoogle Scholar
  15. 15.
    Templeton PA, Farrar MJ, Williams HR, Bruguera J, Smith RM (2000) Complications of tibial shaft soccer fractures. Injury 31(6):415–419CrossRefGoogle Scholar
  16. 16.
    Ankrah S, Mills NJ (2003) Performance of football shin guards for direct stud impacts. Sports Eng 6(4):207–219CrossRefGoogle Scholar
  17. 17.
    Tatar Y, Ramazanoglu N, Camliguney AF, Saygi EK, Cotuk HB (2014) The effectiveness of shin guards used by football players. J Sports Sci Med 13(1):120–127Google Scholar
  18. 18.
    Ankrah S, Mills NJ (2004) Analysis of ankle protection in association football. Sports Eng 7(1):41–52CrossRefGoogle Scholar
  19. 19.
    Naik NK, Shrirao P (2004) Composite structures under ballistic impact. Compos Struct 66(1):579–590CrossRefGoogle Scholar
  20. 20.
    Karagiozova D, Shu DW, Xiang X (2016) On the energy absorption of tube reinforced foam materials under quasi-static and dynamic compression. Int J Mech Sci 105:102–116CrossRefGoogle Scholar
  21. 21.
    Sevkat E, Liaw B, Delale F, Raju BB (2010) Effect of repeated impacts on the response of plain-woven hybrid composites. Compos B Eng 41(5):403–413CrossRefGoogle Scholar
  22. 22.
    De Morais WA, Monteiro SN, d’Almeida JRM (2005) Evaluation of repeated low energy impact damage in carbon–epoxy composite materials. Compos Struct 67(3):307–315CrossRefGoogle Scholar
  23. 23.
    Hrysomallis C (2009) Surrogate thigh model for assessing impact force attenuation of protective pads. J Sci Med Sport 12(1):35–41CrossRefGoogle Scholar
  24. 24.
    Zahid B, Chen X (2013) Development of a helmet test rig for continuously textile reinforced riot helmets. Int J Text Sci 2(1):12–20Google Scholar
  25. 25.
    Zahid B, Chen X (2014) Impact performance of single-piece continuously textile reinforced riot helmet shells. J Compos Mater 48(6):761–766CrossRefGoogle Scholar
  26. 26.
    Belingardi G, Cavatorta MP, Paolino DS (2008) Repeated impact response of hand lay-up and vacuum infusion thick glass reinforced laminates. Int J Impact Eng 35(7):609–619CrossRefGoogle Scholar
  27. 27.
    Belingardi G, Cavatorta MP, Paolino DS (2009) On the rate of growth and extent of the steady damage accumulation phase in repeated impact tests. Compos Sci Technol 69(11):1693–1698CrossRefGoogle Scholar
  28. 28.
    Dionne J-P, El Maach I, Shalabi A, Makris A (2003) A method for assessing the overall impact performance of riot helmets. J Appl Biomech 19(3):246–254CrossRefGoogle Scholar
  29. 29.
    Stretch RA (2000) The impact absorption characteristics of cricket batting helmets. J Sports Sci 18(12):959–964CrossRefGoogle Scholar
  30. 30.
    Gore SE, Laing RM, Wilson CA, Carr DJ, Niven BE (2006) Standardizing a pre-treatment cleaning procedure and effects of application on apparel fabrics. Text Res J 76(6):455–464CrossRefGoogle Scholar
  31. 31.
    International Organization for Standardization (2012) ISO 6330: 2012 Textiles - Domestic washing and drying procedures for textile testing. Int Org Stand, GenevaGoogle Scholar
  32. 32.
    International Organization for Standardization (1996) ISO 5084: 1996 (E) Textiles - Determination of thickness of textiles and textile products. Int Org Stand, GenevaGoogle Scholar
  33. 33.
    European Committee for Standardization (1997) EN 12127: 1997 Textiles - Fabrics - Determination of mass per unit area using small samples. Eur Comm Stand, BrusselsGoogle Scholar
  34. 34.
    British Standards Institution (1988) BS 5441: British standard methods of test for knitted fabrics. Section 2 part 8 determination of the number of visible wales and courses per centimetre. British Standards Institution, LondonGoogle Scholar
  35. 35.
    International Organization for Standardization (2005) ISO 139: Textiles—standard atmospheres for conditioning and testing. Int Org Stand, GenevaGoogle Scholar
  36. 36.
    Mitrevski T, Marshall IH, Thomson R (2006) The influence of impactor shape on the damage to composite laminates. Compos Struct 76(1):116–122CrossRefGoogle Scholar
  37. 37.
    Mitrevski T, Marshall IH, Thomson R, Jones R, Whittingham B (2005) The effect of impactor shape on the impact response of composite laminates. Compos Struct 67(2):139–148CrossRefGoogle Scholar
  38. 38.
    Rai R, Bhangu GS, Mohanty SK, Goel A (2002) Kinematic and temporal evaluation of swings, stick length and their interaction in field hockey. Med Sci Sports Exerc 34(5):1–18CrossRefGoogle Scholar
  39. 39.
    Tobin L, Iremonger M (2006) Modern body armour and helmets: an introduction. Argos Press, CanberraGoogle Scholar
  40. 40.
    Thota N, Epaarachchi J, Lau KT (2015) Evaluation of the blunt thoracic trauma caused by solid sports ball impacts. J Biomech Sci Eng 10(2):14–00264CrossRefGoogle Scholar
  41. 41.
    Addison BJ, Lieberman DE (2015) Tradeoffs between impact loading rate, vertical impulse and effective mass for walkers and heel strike runners wearing footwear of varying stiffness. J Biomech 48(7):1318–1324CrossRefGoogle Scholar
  42. 42.
    Bertrand D, Bourrier F, Olmedo I, Brun M, Berger F, Limam A (2013) Experimental and numerical dynamic analysis of a live tree stem impacted by a Charpy pendulum. Int J Solids Struct 50(10):1689–1698CrossRefGoogle Scholar
  43. 43.
    Pavier J, Langlet A, Eches N, Prat N, Bailly P, Jacquet J-F (2015) Experimental study of the coupling parameters influencing the terminal effects of thoracic blunt ballistic impacts. Forensic Sci Int 252:39–51CrossRefGoogle Scholar
  44. 44.
    Flyger N, MacRae BA (2006) Impact rig user manual, 2nd edn. University of Otago, Dunedin, New Zealand, Clothing and Textile SciencesGoogle Scholar
  45. 45.
    SPSS Inc. (2013) SPSS version 22.0.0.0 for Windows. SPSS Inc, ChicagoGoogle Scholar
  46. 46.
    Harris DA, Spears IR (2010) The effect of rugby shoulder padding on peak impact force attenuation. Br J Sports Med 44(3):200–203CrossRefGoogle Scholar
  47. 47.
    Tyler DJ (2016) Impact protection for functional apparel. Paper presented at the The 90th Textile Institute World Conference: inseparable from the human environment, Poznan, Poland, 25-28 April 2016Google Scholar
  48. 48.
    Aslan Z, Karakuzu R, Okutan B (2003) The response of laminated composite plates under low-velocity impact loading. Compos Struct 59(1):119–127CrossRefGoogle Scholar
  49. 49.
    Sankar BV (1992) Scaling of low-velocity impact for symmetric composite laminates. J Reinf Plast Compos 11(3):296–309CrossRefGoogle Scholar
  50. 50.
    Verdejo R, Mills NJ (2004) Simulating the effects of long distance running on shoe midsole foam. Polym Test 23(5):567–574CrossRefGoogle Scholar
  51. 51.
    Verdejo R, Mills NJ (2004) Heel-shoe interactions and the durability of EVA foam running-shoe midsoles. J Biomech 37(9):1379–1386CrossRefGoogle Scholar
  52. 52.
    Gibson LJ, Ashby MF (1982) The mechanics of three-dimensional cellular materials. Proc R Soc Lond A: Math Phy Eng Sci 382(1782):43–59CrossRefGoogle Scholar
  53. 53.
    Atas C, Icten BM, Küçük M (2013) Thickness effect on repeated impact response of woven fabric composite plates. Compos B Eng 49:80–85CrossRefGoogle Scholar
  54. 54.
    David-West OS, Nash DH, Banks WM (2008) An experimental study of damage accumulation in balanced CFRP laminates due to repeated impact. Compos Struct 83(3):247–258CrossRefGoogle Scholar
  55. 55.
    De Morais WA, Monteiro SN, d’Almeida JRM (2005) Effect of the laminate thickness on the composite strength to repeated low energy impacts. Compos Struct 70(2):223–228CrossRefGoogle Scholar
  56. 56.
    Bir CA, Cassatta SJ, Janda DH (1995) An analysis and comparison of soccer shin guards. Clin J Sport Med 5(2):95–99CrossRefGoogle Scholar
  57. 57.
    Feraboli P (2006) Some recommendations for characterization of composite panels by means of drop tower impact testing. J Aircraft 43(6):1710–1718CrossRefGoogle Scholar

Copyright information

© International Sports Engineering Association 2017

Authors and Affiliations

  • Wan Syazehan Ruznan
    • 1
    • 2
  • Raechel M. Laing
    • 1
  • Bronwyn J. Lowe
    • 1
  • Cheryl A. Wilson
    • 1
  1. 1.Clothing and Textile Sciences, Centre for Materials Science and Technology, University of OtagoDunedinNew Zealand
  2. 2.Textile Technology, Centre for Industrial Technology, Universiti Teknologi MARAShah AlamMalaysia

Personalised recommendations