Sports Engineering

, Volume 14, Issue 2–4, pp 95–110 | Cite as

Validation of a model and a simulator for road cycling on real tracks

  • Thorsten Dahmen
  • Roman Byshko
  • Dietmar Saupe
  • Martin Röder
  • Stephan Mantler
Original Article

Abstract

In this study, methods for data acquisition, analysis, modelling, and simulation of performance parameters in road cycling on real tracks were developed and evaluated. A simulator was designed to facilitate the measurement in a laboratory environment. The simulation included real height profiles and a video playback that was synchronised with the cyclist’s current virtual position on the track, and online visualisation of course and performance parameters. Field data obtained on mountain tracks in this study were compared with the state-of-the-art mathematical model for road cycling power, established by Martin et al. (J Appl Biomech 14: 276–291, 1998), which accounts for the gradient force, air resistance, rolling resistance, frictional losses in wheel bearings and inertia. The model described the performance parameters accurately with correlation coefficients of 0.96–0.99 and signal-to-noise ratios of 19.7–23.9 dB. It was shown that the mathematical model could be implemented on an ergometer for simulating rides on real courses, providing similar quality measures when comparing field and simulator measurements.

Keywords

Road cycling Performance parameters Mathematical model Simulation Model validation Height profiles 

References

  1. 1.
    di Prampero PE, Cortili G, Mognoni P, Saibene F (1979) Equation of motion of a cyclist. J Appl Physiol 47(1):201–206Google Scholar
  2. 2.
    Martin JC, Milliken DL, Cobb JE, McFadden KL, Coggan AR (1998) Validation of a mathematical model for road cycling power. J Appl Biomech 14:276–291Google Scholar
  3. 3.
    Olds TS, Norton KI, Craig NP (1993) Mathematical model of cycling performance. J Appl Physiol 75(2):730–737Google Scholar
  4. 4.
    Olds TS, Norton KI, Lowe EL, Olive S, Reay F, Ly S (1995) Modeling road-cycling performance. J Appl Physiol 78(4):1596–1611Google Scholar
  5. 5.
    Atkinson G, Brunskill A (2000) Pacing strategies during a cycling time trial with simulated headwinds and tailwinds. Ergonomics 43(10):1449–1460CrossRefGoogle Scholar
  6. 6.
    Atkinson G, Peacock O, Passfield L (2007) Variable versus constant power strategies during cycling time-trials: prediction of time savings using an up-to-date mathematical model. J Sports Sci 25(9):1001–1009CrossRefGoogle Scholar
  7. 7.
    Gordon S (2005) Optimising distribution of power during a cycling time trial. Sports Eng 8(2):81–90CrossRefGoogle Scholar
  8. 8.
    Maronski R (1994) On optimal velocity during cycling. J Biomech 27(2):205–213CrossRefGoogle Scholar
  9. 9.
    Wolf S, Dahmen T (2010) Optimierung der Geschwindigkeitssteuerung während Zeitfahrten im Radsport. In: Link D, Wiemeyer J (eds.) Sportinformatik trifft Sporttechnologie, 8. Symposium der dvs-Sektion Sportinformatik, September, 15–17, Darmstadt, pp 235–239Google Scholar
  10. 10.
    Lim AC, Homestead EP, Edwards AG, Carver TC, Kram R, Byrnes WC (2011) Measuring changes in aerodynamic/rolling resistances by cycle-mounted power meters. Med Sci Sports Exerc 43(5):853CrossRefGoogle Scholar
  11. 11.
    Dahmen T, Saupe D (2011) Calibration of a power-velocity-model for road cycling using real power and height data. Int J Comput Sci Sport. IACSS Press, Austria (to appear)Google Scholar
  12. 12.
    Schoberer E (1994) Operating instructions for the srm training system. http://www.srm.de/index.php/de/support/phoca-down-test/category/14-powermeter (date accessed: Aug, 22th, 2011)
  13. 13.
    Gressmann M (2002) Fahrradphysik und Biomechanik. Technik – Formeln – Gesetze, 7. a. edn. Delius Klasing VerlagGoogle Scholar
  14. 14.
    Wilson D, Papadopoulos J, Whitt F (2004) Bicycling science, 3 edn. The MIT Press, MassachusettsGoogle Scholar
  15. 15.
    Cyclus2 website. http://www.cyclus2.com/en/index.htm, date accessed: Aug, 10th, 2011
  16. 16.
    Saupe D, Lüchtenberg D, Röder M, Federolf Ch (2007) Analysis and visualization of space–time Variant parameters in endurance sports training. Proceedings of the 6th International Symposium on Computer Science in Sports, IACSSGoogle Scholar
  17. 17.
    Dahmen T, Byshko R, Saupe D, Röder M, Mantler S. Modeling, simulation and validation of cycling time trials on real tracks. Konstanz Online Publication System. Retrieved from http://nbn-resolving.de/urn:nbn:de:bsz:352-133144

Copyright information

© International Sports Engineering Association 2011

Authors and Affiliations

  • Thorsten Dahmen
    • 1
  • Roman Byshko
    • 1
  • Dietmar Saupe
    • 1
  • Martin Röder
    • 2
  • Stephan Mantler
    • 3
  1. 1.University of KonstanzKonstanzGermany
  2. 2.Hyperstone GmbHKonstanzGermany
  3. 3.VRVis Centre for Virtual Reality and Visualisation ResearchViennaAustria

Personalised recommendations