A Systematic Review of Electronic Health (eHealth) interventions to improve physical activity in patients with breast cancer



Electronic Health (eHealth) may have a positive effect on healthcare, such as patient education and decreasing the costs of healthcare services. Evidence suggests that such interventions can also improve physical activity (PA) of patients. This systematic review aimed to investigate the effects of PA interventions provided through eHealth on breast cancer patients.


This study was conducted through a search in electronic databases up to July 2018. PubMed, EMBASE, Cochrane Central Register of Controlled Trials, Web of Science, Scopus, Science Direct, and Google Scholar databases were searched without time limitation.


In total, 2187 articles were retrieved and finally 16 articles remained. Five were pre/post and 11 were randomized trial studies. Different platforms were used in these studies including web-based, mobile-based, both web-and-mobile-based and email. In total, these articles comprise 2304 breast cancer patients with the mean age of 51 years and 50% were conducted in the USA. Four studies measured PA using wearable devices such as accelerometers and pedometers. All studies reported an increase in PA level at least in one of moderate or vigorous PA, although not all these results were significant.


The results show that eHealth interventions can improve the level of PA in breast cancer patients. Although there are numerous eHealth interventions focusing on PA in cancer patients, there is still an essential need for eHealth interventions to be tailored for breast cancer patients specifically. Clinical trials with appropriate methodology, enough intervention time and follow-up are needed to make evidence-based results more generalizable.

Trial Registration

PROSPERO CRD42018092422;

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1


  1. 1.

    Bray F. Transitions in human development and the global cancer burden. New York: Springer; 2014. p. 54–68.

  2. 2.

    Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

  3. 3.

    Post KE, Flanagan J. Web based survivorship interventions for women with breast cancer: an integrative review. Eur J Oncol Nurs. 2016;25:90–9.

  4. 4.

    Mafu TS, September AV, Shamley D. The potential role of angiogenesis in the development of shoulder pain, shoulder dysfunction, and lymphedema after breast cancer treatment. Cancer Manag Res. 2018;10:81.

  5. 5.

    Fenlon D, Powers C, Simmonds P, Clough J, Addington-Hall J. The JACS prospective cohort study of newly diagnosed women with breast cancer investigating joint and muscle pain, aches, and stiffness: pain and quality of life after primary surgery and before adjuvant treatment. BMC Cancer. 2014;14(1):467.

  6. 6.

    Nesvold I-L, Reinertsen KV, Fosså SD, Dahl AA. The relation between arm/shoulder problems and quality of life in breast cancer survivors: a cross-sectional and longitudinal study. J Cancer Surv. 2011;5(1):62–72.

  7. 7.

    Jeong HJ, Sim Y-J, Hwang KH, Kim GC. Causes of shoulder pain in women with breast cancer-related lymphedema: a pilot study. Yonsei Med J. 2011;52(4):661–7.

  8. 8.

    Galantino ML, Stout NL. Exercise interventions for upper limb dysfunction due to breast cancer treatment. Phys Ther. 2013;93(10):1291–7.

  9. 9.

    Loh SY, Musa AN. Methods to improve rehabilitation of patients following breast cancer surgery: a review of systematic reviews. Breast Cancer (Dove Med Press). 2015;7:81.

  10. 10.

    Tatham B, Smith J, Cheifetz O, Gillespie J, Snowden K, Temesy J, et al. The efficacy of exercise therapy in reducing shoulder pain related to breast cancer: a systematic review. Physiother Can. 2013;65(4):321–30.

  11. 11.

    McNeely ML, Campbell K, Ospina M, Rowe BH, Dabbs K, Klassen TP, et al. Exercise interventions for upper-limb dysfunction due to breast cancer treatment. Cochrane Database Syst Rev. 2010;6:CD005211.

  12. 12.

    Zeng Y, Huang M, Cheng AS, Zhou Y, So WK. Meta-analysis of the effects of exercise intervention on quality of life in breast cancer survivors. Breast Cancer. 2014;21(3):262–74.

  13. 13.

    Haskell WL, Lee I-M, Pate RR, Powell KE, Blair SN, Franklin BA, et al. Physical activity and public health: updated recommendation for adults from the American College of Sports Medicine and the American Heart Association. Circulation. 2007;116(9):1081.

  14. 14.

    Smith SG, Chagpar AB. Adherence to physical activity guidelines in breast cancer survivors. Am Surg. 2010;76(9):962–5.

  15. 15.

    Demark-Wahnefried W, Peterson BL, Winer EP, Marks L, Aziz N, Marcom PK, et al. Changes in weight, body composition, and factors influencing energy balance among premenopausal breast cancer patients receiving adjuvant chemotherapy. J Clin Oncol. 2001;19(9):2381–9.

  16. 16.

    Holmes MD, Chen WY, Feskanich D, Kroenke CH, Colditz GA. Physical activity and survival after breast cancer diagnosis. JAMA. 2005;293(20):2479–86.

  17. 17.

    Eysenbach G. What is e-health? J Med Internet Res. 2001;3(2):e20.

  18. 18.

    Moghadasi H, Asadi F, Hosseini A, Hossein ZE. A model for measuring e-health status around the world. Pajoohande. 2012;16(7):347–57.

  19. 19.

    Finkelstein J, O'connor G, Friedmann R. Development and implementation of the home asthma telemonitoring (HAT) system to facilitate asthma self-care. Stud Health Technol Inf. 2001;84(Pt 1):810–4.

  20. 20.

    Hoffman AJ, Brintnall RA, Brown JK, von Eye A, Jones LW, Alderink G, et al. Virtual reality bringing a new reality to postthoracotomy lung cancer patients via a home-based exercise intervention targeting fatigue while undergoing adjuvant treatment. Cancer Nurs. 2014;37(1):23–33.

  21. 21.

    Smith L, Weinert C. Telecommunication support for rural women with diabetes. Diabetes Educ. 2000;26(4):645–55.

  22. 22.

    Wantland DJ, Portillo CJ, Holzemer WL, Slaughter R, McGhee EM. The effectiveness of web-based vs. non-web-based interventions: a meta-analysis of behavioral change outcomes. J Med Internet Res. 2004;6(4):e40.

  23. 23.

    Tokosi TO, Fortuin J, Douglas TS. The impact of mHealth interventions on breast cancer awareness and screening: systematic review protocol. JMIR Res Protocol. 2017;6(12):e246.

  24. 24.

    Darlow S, Wen K-Y. Development testing of mobile health interventions for cancer patient self-management: a review. Health Inf J. 2016;22(3):633–50.

  25. 25.

    Karami S, Asadi F, Emami H. Thematic categorization of mobile health software packages and their priority from the perspective of Iranian physicians. J Health Biomed Inf. 2017;4(3):216–21.

  26. 26.

    Aranda-Jan CB, Mohutsiwa-Dibe N, Loukanova S. Systematic review on what works, what does not work and why of implementation of mobile health (mHealth) projects in Africa. BMC Public Health. 2014;14(1):188.

  27. 27.

    Free C, Phillips G, Galli L, Watson L, Felix L, Edwards P, et al. The effectiveness of mobile-health technology-based health behaviour change or disease management interventions for health care consumers: a systematic review. PLoS Med. 2013;10(1):e1001362.

  28. 28.

    Kumar S, Nilsen WJ, Abernethy A, Atienza A, Patrick K, Pavel M, et al. Mobile health technology evaluation: the mHealth evidence workshop. Am J Prev Med. 2013;45(2):228–36.

  29. 29.

    Ginossar T, Shah SFA, West AJ, Bentley JM, Caburnay CA, Kreuter MW, et al. Content, usability, and utilization of plain language in breast cancer mobile phone apps: a systematic analysis. JMIR mhealth uhealth. 2017;5(3):e20.

  30. 30.

    Bravo C, O'Donoghue C, Kaplan CP, Luce J, Ozanne E. Can mHealth improve risk assessment in underserved populations? Acceptability of a breast health questionnaire app in ethnically diverse, older, low-income women. J Health Dispar Res Pract. 2014;7(4):6.

  31. 31.

    Maguire R, McCann L, Miller M, Kearney N. Nurse's perceptions and experiences of using of a mobile-phone-based Advanced Symptom Management System (ASyMS©) to monitor and manage chemotherapy-related toxicity. Eur J Oncol Nurs. 2008;12(4):380–6.

  32. 32.

    Egbring M, Far E, Roos M, Dietrich M, Brauchbar M, Kullak-Ublick GA, et al. A mobile app to stabilize daily functional activity of breast cancer patients in collaboration with the physician: a randomized controlled clinical trial. J Med Internet Res. 2016;18(9):e238.

  33. 33.

    Mobasheri MH, Johnston M, King D, Leff D, Thiruchelvam P, Darzi A. Smartphone breast applications—what's the evidence? Breast (Edinburgh, Scotland). 2014;23(5):683–9.

  34. 34.

    Smith SA, Whitehead MS, Sheats JQ, Fontenot B, Alema-Mensah E, Ansa B. Formative research to develop a lifestyle application (app) for African American breast cancer survivors. J Ga Public Health Assoc. 2016;6(1):50–9.

  35. 35.

    Haque MM, Kawsar F, Adibuzzaman M, Ahamed SI, Love R, Dowla R, et al., editors. Findings of e-ESAS: a mobile based symptom monitoring system for breast cancer patients in rural Bangladesh. Conference on human factors in computing systems—proceedings; 2012.

  36. 36.

    Wheelock A, Bock M, Mihalis E, Hwang J, Shepard LN, Rugo H, et al. Incorporation of web-based symptom reporting and management in follow-up (FU) care for early-stage breast cancer. Support Care Cancer. 2012;20:S269–S270270.

  37. 37.

    Berg S, Gielissen M, Custers J, Graaf W, Ottevanger P, Prins J. BREATH: web-based self-management for psychological adjustment after primary breast cancer-results of a multicenter randomized controlled trial. J Clin Oncol. 2015;33(25):2763–71.

  38. 38.

    Zhu J, Ebert L, Liu X, Chan S-C. A mobile application of breast cancer e-support program versus routine care in the treatment of Chinese women with breast cancer undergoing chemotherapy: study protocol for a randomized controlled trial. BMC Cancer. 2017.

  39. 39.

    Vandelanotte C, Müller AM, Short CE, Hingle M, Nathan N, Williams SL, et al. Past, present, and future of eHealth and mHealth research to improve physical activity and dietary behaviors. J Nutr Educ Behav. 2016;48(3):219–28 (e211).

  40. 40.

    Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009;151(4):264–9.

  41. 41.

    Higgins JP, Green S. Cochrane handbook for systematic reviews of interventions 5.1.0. Cochrane Collab. 2011;2011:33–49.

  42. 42.

    Park J, Lee Y, Seo H, Jang B, Son H, Kim S, et al., editors. Risk of bias assessment tool for non-randomized studies (RoBANS): development and validation of a new instrument. 19th Cochrane Colloquium; 2011.

  43. 43.

    Bantum EO, Albright CL, White KK, Berenberg JL, Layi G, Ritter PL, et al. Surviving and thriving with cancer using a web-based health behavior change intervention: randomized controlled trial. J Med Internet Res. 2014;16(2):e54.

  44. 44.

    Chapman J, Fletcher C, Flight I, Wilson C. Pilot randomized trial of a volitional help sheet-based tool to increase leisure time physical activity in breast cancer survivors. Br J Health Psychol. 2018;23(3):723–40.

  45. 45.

    Forbes CC, Blanchard CM, Mummery KK, Courneya KS. Feasibility and preliminary efficacy of an online intervention to increase physical activity in Nova Scotian cancer survivors: a randomized controlled trial. JMIR Cancer. 2015;1(2):e12.

  46. 46.

    Hartman SJ, Nelson SH, Weiner LS. Patterns of fitbit use and activity levels throughout a physical activity intervention: exploratory analysis from a randomized controlled trial. J Med Internet Res. 2018;20(2):e29.

  47. 47.

    Hatchett A, Hallam J, Ford M. Evaluation of a social cognitive theory-based email intervention designed to influence the physical activity of survivors of breast cancer. Psycho-oncology. 2013;22(4):829–36.

  48. 48.

    Kanera I, Willems R, Bolman C, Mesters I, Verboon P, Lechner L. Long-term effects of a web-based cancer aftercare intervention on moderate physical activity and vegetable consumption among early cancer survivors: a randomized controlled trial. Int J Behav Nutr Phys Act. 2017.

  49. 49.

    Kuijpers W, Groen WG, Oldenburg HS, Wouters MW, Aaronson NK, van Harten WH. eHealth for breast cancer survivors: use, feasibility and impact of an interactive portal. JMIR Cancer. 2016;2(1):e3.

  50. 50.

    Lee M, Yun Y, Park H, Lee E, Jung K, Noh D. A Web-based self-management exercise and diet intervention for breast cancer survivors: pilot randomized controlled trial. Int J Nurs Stud. 2014;51(12):1557–67.

  51. 51.

    McCarroll ML, Armbruster S, Pohle-Krauza RJ, Lyzen AM, Min S, Nash DW, et al. Feasibility of a lifestyle intervention for overweight/obese endometrial and breast cancer survivors using an interactive mobile application. Gynecol Oncol. 2015;137(3):508–15.

  52. 52.

    Pope Z, Lee JE, Zeng N, Lee HY, Gao Z. Feasibility of smartphone application and social media intervention on breast cancer survivors' health outcomes. Transl Behav Med. 2019;9(1):11–22.

  53. 53.

    Puszkiewicz P, Roberts AL, Smith L, Wardle J, Fisher A. Assessment of cancer survivors' experiences of using a publicly available physical activity mobile application. JMIR Cancer. 2016;2(1):e7.

  54. 54.

    Quintiliani LM, Mann DM, Puputti M, Quinn E, Bowen DJ. Pilot and feasibility test of a mobile health-supported behavioral counseling intervention for weight management among breast cancer survivors. JMIR Cancer. 2016;2(1):e4.

  55. 55.

    Rabin C, Dunsiger S, Ness K, Marcus B. Internet-based physical activity intervention targeting young adult cancer survivors. J Adolesc Young Adult Oncol. 2012;1(4):188–94.

  56. 56.

    Short C, Rebar A, James E, Duncan M, Courneya K, Plotnikoff R, et al. How do different delivery schedules of tailored web-based physical activity advice for breast cancer survivors influence intervention use and efficacy? J Cancer Surviv. 2017;11(1):80–91.

  57. 57.

    Sturgeon K, Dean L, Heroux M, Kane J, Bauer T, Palmer E, et al. Commercially available lifestyle modification program: randomized controlled trial addressing heart and bone health in BRCA1/2+ breast cancer survivors after risk-reducing salpingo-oophorectomy. J Cancer Surviv. 2017;11(2):246–55.

  58. 58.

    Uhm K, Yoo J, Chung S, Lee J, Lee I, Kim J, et al. Effects of exercise intervention in breast cancer patients: is mobile health (mHealth) with pedometer more effective than conventional program using brochure? Breast Cancer Res Treat. 2016.

  59. 59.

    Craig CL, Marshall AL, Sjorstrom M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95.

  60. 60.

    Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee I-M, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–599.

  61. 61.

    Blair SN, Haskell WL, Ho P, Paffenbarger JR, Ralph S, Vranizan KM, Farquhar JW, et al. Assessment of habitual physical activity by a sevenday recall in a community survey and controlled experiments. Am J Epidemiol. 1985;122(5):794–804.

  62. 62.

    Pinto BM, Frierson GM, Rabin C, Trunzo JJ, Marcus BH. Home-based physical activity intervention for breast cancer patients. J Clin Oncol. 2005;23(15):3577–87.

  63. 63.

    Rabin C, Pinto B, Dunsiger S, Nash J, Trask P. Exercise and relaxation intervention for breast cancer survivors: feasibility, acceptability and effects. Psycho-Oncology. 2009;18(3):258–66.

  64. 64.

    Dishman RK, Steinhardt M. Reliability and concurrent validity for a 7-day re-call of physical activity in college students. Med Sci Sports Exerc. 1988;20(1):14–25.

  65. 65.

    Shephard R. Godin leisure-time exercise questionnaire. Med Sci Sports Exerc. 1997;29(suppl 6):S36–S3838.

  66. 66.

    Godin G, Shephard R. A simple method to assess exercise behavior in the community. Can J Appl Sport Sci. 1985;10(3):141–6.

  67. 67.

    Momenan AA, Delshad M, Sarbazi N, Rezaei GN, Ghanbarian A, Azizi F. Reliability and validity of the Modifiable Activity Questionnaire (MAQ) in an Iranian urban adult population. Arch Iran Med. 2012;15(5):279–82.

  68. 68.

    Harder H, Holroyd P, Burkinshaw L, Watten P, Zammit C, Harris PR, et al. A user-centred approach to developing bWell, a mobile app for arm and shoulder exercises after breast cancer treatment. J Cancer Surviv. 2017;11(6):732–42.

  69. 69.

    Everts FZB, van der Marije L, de Meezenbroek EJ. Web-based individual mindfulness-based cognitive therapy for cancer-related fatigue—a pilot study. Internet Interv. 2015;2(2):200–13.

  70. 70.

    Camargo C, Cavalheiro G, Cardoso A, Lamounier E, Andrade AO, Mendes I, et al editors. Virtual rehabilitation in women with post breast cancer—a case study. Virtual Rehabilitation (ICVR), 2013 International Conference on; 2013: IEEE.

  71. 71.

    Lynch SM, Stricker CT, Brown JC, Berardi JM, Vaughn D, Domchek S, et al. Evaluation of a web-based weight loss intervention in overweight cancer survivors aged 50 years and younger. Obes Sci Pract. 2017;3(1):83–94.

  72. 72.

    Soto-Perez-De-Celis E, Kim H, Rojo-Castillo MP, Sun CL, Chavarri-Guerra Y, Navarrete-Reyes AP, et al. A pilot study of an accelerometer-equipped smartphone to monitor older adults with cancer receiving chemotherapy in Mexico. J Geriatr Oncol. 2018;9(2):145–51.

  73. 73.

    Valle C, Deal A, Tate D. Preventing weight gain in African American breast cancer survivors using smart scales and activity trackers: a randomized controlled pilot study. J Cancer Surviv. 2017;11(1):133–48.

  74. 74.

    Hong YA, Goldberg D, Ory MG, Towne SD Jr, Forjuoh SN, Kellstedt D, et al. Efficacy of a mobile-enabled web app (iCanFit) in promoting physical activity among older cancer survivors: a pilot study. JMIR Cancer. 2015;1(1):e7.

  75. 75.

    Galiano-Castillo N, Arroyo-Morales M, Lozano-Lozano M, Fernandez-Lao C, Martin-Martin L, Del-Moral-Avila R, et al. Effect of an Internet-based telehealth system on functional capacity and cognition in breast cancer survivors: a secondary analysis of a randomized controlled trial. Support Care Cancer Off J Multinatl Assoc Support Care Cancer. 2017;25(11):3551–9.

  76. 76.

    Galiano-Castillo N, Cantarero-Villanueva I, Fernandez-Lao C, Ariza-Garcia A, Diaz-Rodriguez L, Del-Moral-Avila R, et al. Telehealth system: a randomized controlled trial evaluating the impact of an internet-based exercise intervention on quality of life, pain, muscle strength, and fatigue in breast cancer survivors. Cancer. 2016;122(20):3166–74.

  77. 77.

    Casey B, Coote S, Donnelly A. Objective physical activity measurement in people with multiple sclerosis: a review of the literature. Disabil Rehabil Assist. 2018;13(2):124–31.

  78. 78.

    Fox S, Duggan M. Health online 2013. Washington: Pew Internet & American Life Project; 2013.

  79. 79.

    Pandey A, Hasan S, Dubey D, Sarangi S. Smartphone apps as a source of cancer information: changing trends in health information-seeking behavior. J Cancer Educ. 2013;28(1):138–42.

  80. 80.

    Dorsey ER, McConnell MV, Shaw SY, Trister AD, Friend SH. The use of smartphones for health research. Acad Med. 2017;92(2):157–60.

  81. 81.

    Rincon E, Monteiro-Guerra F, Rivera-Romero O, Dorronzoro-Zubiete E, Sanchez-Bocanegra CL, Gabarron E. Mobile phone apps for quality of life and well-being assessment in breast and prostate cancer patients: systematic review. JMIR Mhealth Uhealth. 2017;5(12):e187.

  82. 82.

    Harrington S, Padua D, Battaglini C, Michener LA. Upper extremity strength and range of motion and their relationship to function in breast cancer survivors. Physiother Theory Pract. 2013;29(7):513–20.

  83. 83.

    Johansen S, Fosså K, Nesvold IL, Malinen E, Fosså SD. Arm and shoulder morbidity following surgery and radiotherapy for breast cancer. Acta Oncol. 2014;53(4):521–9.

  84. 84.

    Merchant C, Chapman T, Kilbreath S, Refshauge K, Krupa K. Decreased muscle strength following management of breast cancer. Disabil Rehabil. 2008;30(15):1098–105.

  85. 85.

    Monleon S, Ferrer M, Tejero M, Pont A, Piqueras M, Belmonte R. Shoulder strength changes one year after axillary lymph node dissection or sentinel lymph node biopsy in patients with breast cancer. Arch Phys Med Rehabil. 2016;97(6):953–63.

  86. 86.

    Verbelen H, Gebruers N, Eeckhout F-M, Verlinden K, Tjalma W. Shoulder and arm morbidity in sentinel node-negative breast cancer patients: a systematic review. Breast Cancer Res Treat. 2014;144(1):21–31.

  87. 87.

    Bender JL, Yue RYK, To MJ, Deacken L, Jadad AR. A lot of action, but not in the right direction: systematic review and content analysis of smartphone applications for the prevention, detection, and management of cancer. J Med Internet Res. 2013;15(12):e287.

  88. 88.

    Collado-Borrell R, Escudero-Vilaplana V, Ribed-Sánchez A, Ibáñez-García S, Herranz-Alonso A, Sanjurjo-Sáez M. Smartphone applications for cancer patients; what we know about them. Acad Med. 2016;40(1):25–35.

  89. 89.

    Jiemin Z, Ebert L, Xiangyu L, Chan SW-C. A mobile application of breast cancer e-support program versus routine Care in the treatment of Chinese women with breast cancer undergoing chemotherapy: study protocol for a randomized controlled trial. BMC Cancer. 2017;17:1–9.

  90. 90.

    Langius-Eklöf A, Crafoord MT, Christiansen M, Fjell M, Sundberg K. Effects of an interactive mHealth innovation for early detection of patient-reported symptom distress with focus on participatory care: protocol for a study based on prospective, randomised, controlled trials in patients with prostate and breast cancer. BMC Cancer. 2017;17(1):466.

  91. 91.

    Lyons E, Baranowski T, Basen-Engquist K, Lewis Z, Swartz M, Jennings K, et al. Testing the effects of narrative and play on physical activity among breast cancer survivors using mobile apps: study protocol for a randomized controlled trial. BMC Cancer. 2016;16:202.

  92. 92.

    Maguire R, Fox P, McCann L, Miaskowski C, Kotronoulas G, Miller M, et al. The eSMART study protocol: a randomised controlled trial to evaluate electronic symptom management using the advanced symptom management system (ASyMS) remote technology for patients with cancer. BMJ Open. 2017;7(5):e015016.

  93. 93.

    Ritvo P, Obadia M, Santa Mina D, Alibhai S, Sabiston C, Oh P, et al. Smartphone-enabled health coaching intervention (iMOVE) to promote long-term maintenance of physical activity in breast cancer survivors: protocol for a feasibility pilot randomized controlled trial. JMIR Res Protoc. 2017;6(8):e165.

  94. 94.

    van Velsen L, Beaujean DJ, van Gemert-Pijnen JE. Why mobile health app overload drives us crazy, and how to restore the sanity. BMC Med Inform Decis Making. 2013;13(1):23.

Download references


This study was part of a PhD project conducted at Shahid Beheshti University of Medical Sciences.



Author information

Correspondence to Farkhondeh Asadi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dorri, S., Asadi, F., Olfatbakhsh, A. et al. A Systematic Review of Electronic Health (eHealth) interventions to improve physical activity in patients with breast cancer. Breast Cancer 27, 25–46 (2020).

Download citation


  • eHealth
  • mHealth
  • Physical activity
  • Systematic review
  • Breast cancer