Advertisement

Breast Cancer

, Volume 26, Issue 1, pp 93–105 | Cite as

Quantitative proteome and lysine succinylome analyses provide insights into metabolic regulation in breast cancer

  • Chenchen Liu
  • Ying Liu
  • Lei Chen
  • Mingjun Zhang
  • Wei Li
  • Huaidong Cheng
  • Bo ZhangEmail author
Original Article
  • 125 Downloads

Abstract

Background

Breast cancer, the most common invasive cancer and cause of cancer-related death in women worldwide, is a multifactorial, complex disease, and many molecular players and mechanisms underlying the complexity of its clinical behavior remain unknown.

Methods

To explore the molecular features of breast cancer, quantitative proteome and succinylome analyses in breast cancer were extensively studied using quantitative proteomics techniques, anti-succinyl lysine antibody-based affinity enrichment, and high-resolution LC–MS/MS analysis.

Results

Our study is the first to detect the regulation of lysine succinylation in breast cancer progression. We identified a novel mechanism by which the pentose phosphate pathway and the endoplasmic reticulum protein processing pathway might be regulated via lysine succinylation in their core enzymes.

Conclusions

These results expand our understanding of tumorigenesis mechanisms and provide a basis for further characterization of the pathophysiological roles in breast cancer progression, laying a foundation for innovative and novel breast cancer drugs and therapies.

Keywords

Breast cancer Proteomics Lysine succinylation Quantitative analysis Bioinformatics analysis 

Notes

Acknowledgements

We thank the individuals and families who participated in this project. We would also like to thank the participants who helped to collect samples from Hospital No. 1, Anhui Medical University, China. Additionally, we thank the State Key Laboratory Incubation Base of Dermatology, Ministry of National Science and Technology (Hefei, China).

Compliance with ethical standards

Conflict of interest

The authors have declared that no competing interest exists.

Supplementary material

12282_2018_893_MOESM1_ESM.docx (14 kb)
Supplementary material 1 (DOCX 14 KB)
12282_2018_893_MOESM2_ESM.xls (28 kb)
Basic clinical information of three patients (XLS 28 KB)
12282_2018_893_MOESM3_ESM.xlsx (23 kb)
Detailed information on differentially quantified proteins with a threshold fold-change > 1.5 (P <0.05) in human breast cancer (XLSX 23 KB)
12282_2018_893_MOESM4_ESM.xlsx (1 mb)
Identified and quantified proteins in three patients (XLSX 1036 KB)
12282_2018_893_MOESM5_ESM.xlsx (12 kb)
The GO terms of the level 2 distribution of the differentially expressed proteins (XLSX 11 KB)
12282_2018_893_MOESM6_ESM.xlsx (12 kb)
Detailed information on GO-based enrichment of differentially expressed proteins (XLSX 11 KB)
12282_2018_893_MOESM7_ESM.xlsx (23 kb)
Detailed information on GO enrichment-based clustering of differentially expressed proteins (XLSX 22 KB)
12282_2018_893_MOESM8_ESM.xlsx (46 kb)
Detailed information on identified and quantified lysine succinylation sites and proteins (XLSX 45 KB)

References

  1. 1.
    Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer. 2010;127(12):2893–917.CrossRefGoogle Scholar
  2. 2.
    Mahdi KM, Nassiri MR, Nasiri K. Hereditary genes and SNPs associated with breast cancer. Asian Pac J Cancer Prev APJCP. 2013;14(6):3403–9.CrossRefGoogle Scholar
  3. 3.
    Zhang B, Wang J, Wang X, Zhu J, Liu Q, Shi Z, et al. Proteogenomic characterization of human colon and rectal cancer. Nature. 2014;513(7518):382–7.CrossRefGoogle Scholar
  4. 4.
    Ellis MJ, Gillette M, Carr SA, Paulovich AG, Smith RD, Rodland KK, et al. Connecting genomic alterations to cancer biology with proteomics: the NCI Clinical Proteomic Tumor Analysis Consortium. Cancer Discov. 2013;3(10):1108–12.CrossRefGoogle Scholar
  5. 5.
    Aebersold R, Mann M. Mass-spectrometric exploration of proteome structure and function. Nature. 2016;537(7620):347–55.CrossRefGoogle Scholar
  6. 6.
    Belizario JE, Sangiuliano BA, Perez-Sosa M, Santos BV, Machado-Santelli G. Advances in the integration of optical and mass spectrometry molecular imaging technologies: from omics data to molecular signature discovery. Discov Med. 2015;20(112):393–401.Google Scholar
  7. 7.
    Edwards NJ, Oberti M, Thangudu RR, Cai S, McGarvey PB, Jacob S, et al. The CPTAC data portal: a resource for cancer proteomics research. J Proteome Res. 2015;14(6):2707–13.CrossRefGoogle Scholar
  8. 8.
    Prabakaran S, Lippens G, Steen H, Gunawardena J. Post-translational modification: nature’s escape from genetic imprisonment and the basis for dynamic information encoding. Wiley Interdiscip Rev Syst Biol Med. 2012;4(6):565–83.CrossRefGoogle Scholar
  9. 9.
    Zhao Y, Jensen ON. Modification-specific proteomics: strategies for characterization of post-translational modifications using enrichment techniques. Proteomics. 2009;9(20):4632–41.CrossRefGoogle Scholar
  10. 10.
    Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, et al. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell. 2013;23(4):464–76.CrossRefGoogle Scholar
  11. 11.
    Choudhary C, Weinert BT, Nishida Y, Verdin E, Mann M. The growing landscape of lysine acetylation links metabolism and cell signalling. Nat Rev Mol Cell Biol. 2014;15(8):536–50.CrossRefGoogle Scholar
  12. 12.
    Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D, Daniel JA, et al. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep. 2013;4(4):842–51.CrossRefGoogle Scholar
  13. 13.
    Li X, Hu X, Wan Y, Xie G, Li X, Chen D, et al. Systematic identification of the lysine succinylation in the protozoan parasite Toxoplasma gondii. J Proteome Res. 2014;13(12):6087–95.CrossRefGoogle Scholar
  14. 14.
    Kim S, Coulombe PA. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev. 2007;21(13):1581–97.CrossRefGoogle Scholar
  15. 15.
    Quinlan RA, Schiller DL, Hatzfeld M, Achtstatter T, Moll R, Jorcano JL, et al. Patterns of expression and organization of cytokeratin intermediate filaments. Ann N Y Acad Sci. 1985;455:282–306.CrossRefGoogle Scholar
  16. 16.
    Moll R, Divo M, Langbein L. The human keratins: biology and pathology. Histochem Cell Biol. 2008;129(6):705–33.CrossRefGoogle Scholar
  17. 17.
    Magin TM, Vijayaraj P, Leube RE. Structural and regulatory functions of keratins. Exp Cell Res. 2007;313(10):2021–32.CrossRefGoogle Scholar
  18. 18.
    Vijayaraj P, Kroger C, Reuter U, Windoffer R, Leube RE, Magin TM. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J Cell Biol. 2009;187(2):175–84.CrossRefGoogle Scholar
  19. 19.
    Fortier AM, Van Themsche C, Asselin E, Cadrin M. Akt isoforms regulate intermediate filament protein levels in epithelial carcinoma cells. FEBS Lett. 2010;584(5):984–8.CrossRefGoogle Scholar
  20. 20.
    Santos M, Paramio JM, Bravo A, Ramirez A, Jorcano JL. The expression of keratin k10 in the basal layer of the epidermis inhibits cell proliferation and prevents skin tumorigenesis. J Biol Chem. 2002;277(21):19122–30.CrossRefGoogle Scholar
  21. 21.
    Dakir EH, Feigenbaum L, Linnoila RI. Constitutive expression of human keratin 14 gene in mouse lung induces premalignant lesions and squamous differentiation. Carcinogenesis. 2008;29(12):2377–84.CrossRefGoogle Scholar
  22. 22.
    Depianto D, Kerns ML, Dlugosz AA, Coulombe PA. Keratin 17 promotes epithelial proliferation and tumor growth by polarizing the immune response in skin. Nat Genet. 2010;42(10):910–4.CrossRefGoogle Scholar
  23. 23.
    Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11(2):174–83.CrossRefGoogle Scholar
  24. 24.
    Pathmanathan N, Balleine RL. Ki67 and proliferation in breast cancer. J Clin Pathol. 2013;66(6):512–6.CrossRefGoogle Scholar
  25. 25.
    Romero Q, Bendahl PO, Klintman M, Loman N, Ingvar C, Ryden L, et al. Ki67 proliferation in core biopsies versus surgical samples—a model for neo-adjuvant breast cancer studies. BMC Cancer. 2011;11:341.CrossRefGoogle Scholar
  26. 26.
    Jiang P, Du W, Wu M. Regulation of the pentose phosphate pathway in cancer. Protein Cell. 2014;5(8):592–602.CrossRefGoogle Scholar
  27. 27.
    Diaz-Moralli S, Aguilar E, Marin S, Coy JF, Dewerchin M, Antoniewicz MR, et al. A key role for transketolase-like 1 in tumor metabolic reprogramming. Oncotarget. 2016;7(32):51875–97.CrossRefGoogle Scholar
  28. 28.
    Chen H, Yue JX, Yang SH, Ding H, Zhao RW, Zhang S. Overexpression of transketolase-like gene 1 is associated with cell proliferation in uterine cervix cancer. J Exp Clin Cancer Res. 2009;28:43.CrossRefGoogle Scholar
  29. 29.
    Heinrich PC, Morris HP, Weber G. Behavior of transaldolase (EC 2.2.1.2) and transketolase (EC 2.2.1.1) Activities in normal, neoplastic, differentiating, and regenerating liver. Cancer Res. 1976;36(9 pt.1):3189–97.Google Scholar
  30. 30.
    Chao YK, Peng TL, Chuang WY, Yeh CJ, Li YL, Lu YC, et al. Transketolase serves a poor prognosticator in esophageal cancer by promoting cell invasion via epithelial–mesenchymal transition. J Cancer. 2016;7(13):1804–11.CrossRefGoogle Scholar
  31. 31.
    Schenk G, Duggleby RG, Nixon PF. Heterologous expression of human transketolase. Int J Biochem Cell Biol. 1998;30(3):369–78.CrossRefGoogle Scholar
  32. 32.
    Zhang Z, Tan M, Xie Z, Dai L, Chen Y, Zhao Y. Identification of lysine succinylation as a new post-translational modification. Nat Chem Biol. 2011;7(1):58–63.CrossRefGoogle Scholar
  33. 33.
    Gibson GE, Xu H, Chen HL, Chen W, Denton TT, Zhang S. Alpha-ketoglutarate dehydrogenase complex-dependent succinylation of proteins in neurons and neuronal cell lines. J Neurochem. 2015;134(1):86–96.CrossRefGoogle Scholar
  34. 34.
    Fu XL, Gao DS. Endoplasmic reticulum proteins quality control and the unfolded protein response: the regulative mechanism of organisms against stress injuries. Biofactors. 2014;40(6):569–85.CrossRefGoogle Scholar
  35. 35.
    Kelly E, Greene CM, Carroll TP, McElvaney NG, O’Neill SJ. Selenoprotein S/SEPS1 modifies endoplasmic reticulum stress in Z variant alpha1-antitrypsin deficiency. J Biol Chem. 2009;284(25):16891–7.CrossRefGoogle Scholar
  36. 36.
    Yoshida H. ER stress and diseases. FEBS J. 2007;274(3):630–58.CrossRefGoogle Scholar
  37. 37.
    Miura Y, Kaira K, Sakurai R, Imai H, Tomizawa Y, Sunaga N, et al. High expression of GRP78/BiP as a novel predictor of favorable outcomes in patients with advanced thymic carcinoma. Int J Clin Oncol. 2017;22:872–9.CrossRefGoogle Scholar
  38. 38.
    Shimizu A, Kaira K, Yasuda M, Asao T, Ishikawa O. Clinical and pathological significance of ER stress marker (BiP/GRP78 and PERK) expression in malignant melanoma. Pathol Oncol Res. 2017;23(1):111–6.CrossRefGoogle Scholar
  39. 39.
    Nami B, Ghasemi-Dizgah A, Vaseghi A. Overexpression of molecular chaperons GRP78 and GRP94 in CD44(hi)/CD24(lo) breast cancer stem cells. Bioimpacts. 2016;6(2):105–10.CrossRefGoogle Scholar
  40. 40.
    Jo SH, Choi JA, Lim YJ, Lee J, Cho SN, Oh SM, et al. Calreticulin modulates the intracellular survival of mycobacteria by regulating ER-stress-mediated apoptosis. Oncotarget. 2017;8(35):58686–98.CrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2018

Authors and Affiliations

  • Chenchen Liu
    • 1
    • 2
  • Ying Liu
    • 1
    • 2
  • Lei Chen
    • 2
  • Mingjun Zhang
    • 2
  • Wei Li
    • 2
  • Huaidong Cheng
    • 2
  • Bo Zhang
    • 1
    • 2
    Email author
  1. 1.School of Life SciencesAnhui Medical UniversityHefeiChina
  2. 2.Department of Oncology, No. 2 HospitalAnhui Medical UniversityHefeiChina

Personalised recommendations