Breast Cancer

, Volume 24, Issue 2, pp 180–190

DuCLOX-2/5 inhibition: a promising target for cancer chemoprevention

  • Swetlana Gautam
  • Subhadeep Roy
  • Mohd Nazam Ansari
  • Abdulaziz S. Saeedan
  • Shubhini A. Saraf
  • Gaurav Kaithwas
Review Article

Abstract

Cancer is a leading cause of death and major health concern worldwide. The animal and human studies support the presumption that inflammation directs the cancer initiation and progression. Cyclooxygenase-2 (COX-2) and 5-lipoxygenase (5-LOX) are the key players in the inflammatory cascade contributing towards the angiogenesis, tumor cell invasiveness, and disruption in the pathways of cellular proliferation/apoptosis. Contemporary studies have particularized a promising role of COX-2 and 5-LOX inhibitors in cancer chemoprevention. The present review is a pursuit to define implications of dual COX-2 and 5-LOX (DuCLOX-2/5) inhibition on various aspects of cancer augmentation and chemoprevention.

Keywords

Angiogenesis Apoptosis Cyclooxygenase Lipoxygenase NSAIDs Proliferation 

Abbreviations

ATP

Adenosine triphosphate

AA

Arachidonic acid

Bcl-2

B cell chronic lymphocytic leukaemia-2

COX

Cyclooxygenase

ERK

Extracellular signal regulated kinase

GDP

Guanosine diphosphate

GTP

Guanosine triphosphate

HETE

Hydroeicosa-tetraenoic acid

HPETE

Hydroperoxyeicosa-tetraenoic acid

LXs

Lipoxins

LOX

Lipoxygenase

LTs

Leukotrienes

MAPK

Mitogen activated protein kinase

NSAIDs

Non-steroidal anti-inflammatory drugs

NF-Kb

Nuclear factor-kappa B

PPAR

Peroxisome proliferator activated receptor

PI3K/AKT

Phosphoinositide-3 kinase/AKT

PLA2

Phospholipase A2

PIP2

Phosphatidylinositol 4, 5-bisphosphate

PIP3

Phosphatidylinositol-3,4,5-triphosphate

PUFA

Polyunsaturated fatty acids

PKC

Protein kinase C

PGI2

Prostacyclin

PGs

Prostaglandins

RTKs

Receptor tyrosine kinase

RXR

Retinoid X receptor

TXs

Thromboxane

VEGF

Vascular endothelial growth factor

5-HETE

5-Hydroxytetraenoic acid

FLAP

5-LOX activating protein

References

  1. 1.
    Greene ER, Huang S, Serhan CN, Panigrahy D. Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 2011;96(1):27–36.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hammamieh R, Sumaida D, Zhang X, Das R, Jett M. Control of the growth of human breast cancer cells in culture by manipulation of arachidonate metabolism. BMC Cancer. 2007;7(1):138.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jänne PA, Mayer RJ. Chemoprevention of colorectal cancer. N Engl J Med. 2000;342(26):1960–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Dubois R. Review article: cyclooxygenase—a target for colon cancer prevention. Aliment Pharmacol Ther. 2000;14(s1):64–7.CrossRefPubMedGoogle Scholar
  5. 5.
    Astorg P. Dietary n-6 and n-3 polyunsaturated fatty acids and prostate cancer risk: a review of epidemiological and experimental evidence. Cancer Causes Control. 2004;15(4):367–86.CrossRefPubMedGoogle Scholar
  6. 6.
    Kawai N, Tsujii M, Tsuji S. Cyclooxygenases and colon cancer. Prostaglandins Other Lipid Mediat. 2002;68:187–96.CrossRefPubMedGoogle Scholar
  7. 7.
    Ghosh J, Myers CE. Arachidonic acid stimulates prostate cancer cell growth: critical role of 5-lipoxygenase. Biochem Biophys Res Commun. 1997;235(2):418–23.CrossRefPubMedGoogle Scholar
  8. 8.
    Harris RE, Casto BC, Harris ZM. Cyclooxygenase-2 and the inflammogenesis of breast cancer. World J Clin Oncol. 2014;5(4):677–92.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Harris R. Cyclooxygenase-2 (cox-2) blockade in the chemoprevention of cancers of the colon, breast, prostate, and lung. Inflammopharmacology. 2009;17(2):55–67.CrossRefPubMedGoogle Scholar
  10. 10.
    Dempke W, Rie C, Grothey A, Schmoll H-J. Cyclooxygenase-2: a novel target for cancer chemotherapy? J Cancer Res Clin Oncol. 2001;127(7):411–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Ristimäki A, Sivula A, Lundin J, Lundin M, Salminen T, Haglund C, et al. Prognostic significance of elevated cyclooxygenase-2 expression in breast cancer. Cancer Res. 2002;62(3):632–5.PubMedGoogle Scholar
  12. 12.
    Sinicrope FA, Gill S. Role of cyclooxygenase-2 in colorectal cancer. Cancer Metastasis Rev. 2004;23(1–2):63–75.CrossRefPubMedGoogle Scholar
  13. 13.
    Lyons TR, Borges VF, Betts CB, Guo Q, Kapoor P, Martinson HA, et al. Cyclooxygenase-2–dependent lymphangiogenesis promotes nodal metastasis of postpartum breast cancer. J Clin Investig. 2014;124(9):3901–12.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM. Cyclooxygenases in cancer: progress and perspective. Cancer Lett. 2004;215(1):1–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Liu CH, Chang S-H, Narko K, Trifan OC, Wu M-T, Smith E, et al. Overexpression of cyclooxygenase-2 is sufficient to induce tumorigenesis in transgenic mice. J Biol Chem. 2001;276(21):18563–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Qu T, Uz T, Manev H. Inflammatory 5-LOX mRNA and protein are increased in brain of aging rats. Neurobiol Aging. 2000;21(5):647–52.CrossRefPubMedGoogle Scholar
  17. 17.
    Hatzelmann A, Fruchtmann R, Mohrs K, Raddatz S, Matzke M, Pleiss U, et al. Mode of action of the leukotriene synthesis (FLAP) inhibitor BAY X 1005: implications for biological regulation of 5-lipoxygenase. Agents Actions. 1994;43(1–2):64–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Ye Y, Wu W, Shin V, Bruce I, Wong B, Cho C. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis. 2005;26(4):827–34.CrossRefPubMedGoogle Scholar
  19. 19.
    Nie D, Lamberti M, Zacharek A, Li L, Szekeres K, Tang K, et al. Thromboxane A 2 regulation of endothelial cell migration, angiogenesis, and tumor metastasis. Biochem Biophys Res Commun. 2000;267(1):245–51.CrossRefPubMedGoogle Scholar
  20. 20.
    Nie D, Che M, Grignon D, Tang K, Honn KV. Role of eicosanoids in prostate cancer progression. Cancer Metastasis Rev. 2001;20(3–4):195–206.CrossRefPubMedGoogle Scholar
  21. 21.
    Altavilla D, Minutoli L, Polito F, Irrera N, Arena S, Magno C, et al. Effects of flavocoxid, a dual inhibitor of COX and 5-lipoxygenase enzymes, on benign prostatic hyperplasia. Br J Pharmacol. 2012;167(1):95–108.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Tavolari S, Bonafè M, Marini M, Ferreri C, Bartolini G, Brighenti E, et al. Licofelone, a dual COX/5-LOX inhibitor, induces apoptosis in HCA-7 colon cancer cells through the mitochondrial pathway independently from its ability to affect the arachidonic acid cascade. Carcinogenesis. 2008;29(2):371–80.CrossRefPubMedGoogle Scholar
  23. 23.
    Ding X, Zhu C, Qiang H, Zhou X, Zhou G. Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomed Pharmacother. 2011;65(7):486–90.CrossRefPubMedGoogle Scholar
  24. 24.
    Schneider C, Pozzi A. Cyclooxygenases and lipoxygenases in cancer. Cancer Metastasis Rev. 2011;30(3–4):277–94.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hoque A, Lippman SM, Wu T-T, Xu Y, Liang ZD, Swisher S, et al. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: a potential target for prevention. Carcinogenesis. 2005;26(4):785–91.CrossRefPubMedGoogle Scholar
  26. 26.
    Needleman P, Jakschik B, Morrison A, Lefkowith J. Arachidonic acid metabolism. Annu Rev Biochem. 1986;55(1):69–102.CrossRefPubMedGoogle Scholar
  27. 27.
    Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A. Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr. 2004;79(6):935–45.PubMedGoogle Scholar
  28. 28.
    Holtzman MJ. Arachidonic acid metabolism. Am Rev Respir Dis. 1991;143:188–203.CrossRefPubMedGoogle Scholar
  29. 29.
    Shiota G, Okubo M, Noumi T, Noguchi N, Oyama K, Takano Y, et al. Cyclooxygenase-2 expression in hepatocellular carcinoma. Hepatogastroenterology. 1998;46(25):407–12.Google Scholar
  30. 30.
    Saukkonen K, Buskens CJ, Sivula A, van Rees BP, Erkinheimo T-L, Rintahaka J, et al. COX-2 in cancer. In: COX-2 Inhibitors. Berlin: Springer; 2004. p. 227–43.Google Scholar
  31. 31.
    Sano H, Kawahito Y, Wilder RL, Hashiramoto A, Mukai S, Asai K, et al. Expression of cyclooxygenase-1 and-2 in human colorectal cancer. Cancer Res. 1995;55(17):3785–9.PubMedGoogle Scholar
  32. 32.
    Hatazawa R, Tanigami M, Izumi N, Kamei K, Tanaka A, Takeuchi K. Prostaglandin E2 stimulates VEGF expression in primary rat gastric fibroblasts through EP4 receptors. Inflammopharmacology. 2007;15(5):214–7.CrossRefPubMedGoogle Scholar
  33. 33.
    Williams CS, Tsujii M, Reese J, Dey SK, DuBois RN. Host cyclooxygenase-2 modulates carcinoma growth. J Clin Investig. 2000;105(11):1589–94.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Green DR, Reed JC. Mitochondria and apoptosis. Science. 1998;281(5381):1309.CrossRefPubMedGoogle Scholar
  35. 35.
    Bossy-Wetzel E, Green DR. Caspases induce cytochrome c release from mitochondria by activating cytosolic factors. J Biol Chem. 1999;274(25):17484–90.CrossRefPubMedGoogle Scholar
  36. 36.
    Danial NN. BCL-2 family proteins: critical checkpoints of apoptotic cell death. Clin Cancer Res. 2007;13(24):7254–63.CrossRefPubMedGoogle Scholar
  37. 37.
    Gross A, McDonnell JM, Korsmeyer SJ. BCL-2 family members and the mitochondria in apoptosis. Genes Dev. 1999;13(15):1899–911.CrossRefPubMedGoogle Scholar
  38. 38.
    Hardwick JM, Soane L. Multiple functions of BCL-2 family proteins. Cold Spring Harb Perspect Biol. 2013;5(2):a008722.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Ly JD, Grubb D, Lawen A. The mitochondrial membrane potential (Δψm) in apoptosis; an update. Apoptosis. 2003;8(2):115–28.CrossRefPubMedGoogle Scholar
  41. 41.
    Hunter AM, LaCasse EC, Korneluk RG. The inhibitors of apoptosis (IAPs) as cancer targets. Apoptosis. 2007;12(9):1543–68.CrossRefPubMedGoogle Scholar
  42. 42.
    McGinty A, Chang Y-WE, Sorokin A, Bokemeyer D, Dunn MJ. Cyclooxygenase-2 expression inhibits trophic withdrawal apoptosis in nerve growth factor-differentiated PC12 cells. J Biol Chem. 2000;275(16):12095–101.CrossRefPubMedGoogle Scholar
  43. 43.
    Li Z, Lang J, Leng J, Liu D. Increased levels of prostaglandin E2 and bcl-2 in peritoneal fluid and serum of patients with endometriosis. Zhonghua fu chan ke za zhi. 2005;40(9):598–600.PubMedGoogle Scholar
  44. 44.
    Wang D, DuBois RN. Cyclooxygenase 2-derived prostaglandin E2 regulates the angiogenic switch. Proc Natl Acad Sci USA. 2004;101(2):415–6.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Sheng H, Shao J, Morrow JD, Beauchamp RD, DuBois RN. Modulation of apoptosis and Bcl-2 expression by prostaglandin E2 in human colon cancer cells. Cancer Res. 1998;58(2):362–6.PubMedGoogle Scholar
  46. 46.
    Wu KK, Liou J-Y. Cyclooxygenase inhibitors induce colon cancer cell apoptosis via PPARδ → 14-3-3ε pathway. Methods Mol Biol. 2009;512:295–307.CrossRefPubMedGoogle Scholar
  47. 47.
    Michalik L, Desvergne B, Wahli W. Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat Rev Cancer. 2004;4(1):61–70.CrossRefPubMedGoogle Scholar
  48. 48.
    Inoue K, Kawahito Y, Tsubouchi Y, Yamada R, Kohno M, Hosokawa Y, et al. Expression of peroxisome proliferator-activated receptor (PPAR)-gamma in human lung cancer. Anticancer Res. 2000;21(4A):2471–6.Google Scholar
  49. 49.
    Avis I, Martínez A, Tauler J, Zudaire E, Mayburd A, Abu-Ghazaleh R, et al. Inhibitors of the arachidonic acid pathway and peroxisome proliferator-activated receptor ligands have superadditive effects on lung cancer growth inhibition. Cancer Res. 2005;65(10):4181–90.CrossRefPubMedGoogle Scholar
  50. 50.
    Panigraphy D, Huang S, Kieran MW, Kaipainen A. PPARγ as a therapeutic target for tumor angiogenesis and metastasis. Cancer Biol Ther. 2005;4(7):687–93.CrossRefGoogle Scholar
  51. 51.
    Tsujii M, Kawano S, Tsuji S, Sawaoka H, Hori M, DuBois RN. Cyclooxygenase regulates angiogenesis induced by colon cancer cells. Cell. 1998;93(5):705–16.CrossRefPubMedGoogle Scholar
  52. 52.
    Basu GD, Pathangey LB, Tinder TL, LaGioia M, Gendler SJ, Mukherjee P. Cyclooxygenase-2 Inhibitor Induces Apoptosis in Breast Cancer Cells in an In vivo Model of Spontaneous Metastatic Breast Cancer11Susan G. Komen Breast Cancer Foundation. Note: GD Basu and LB Pathangey contributed equally to this work. Mol Cancer Res. 2004;2(11):632–42.PubMedGoogle Scholar
  53. 53.
    Chang S-H, Liu CH, Conway R, Han DK, Nithipatikom K, Trifan OC, et al. Role of prostaglandin E2-dependent angiogenic switch in cyclooxygenase 2-induced breast cancer progression. Proc Natl Acad Sci USA. 2004;101(2):591–6.CrossRefPubMedGoogle Scholar
  54. 54.
    Karavitis J, Hix LM, Shi YH, Schultz RF, Khazaie K, Zhang M. Regulation of COX2 expression in mouse mammary tumor cells controls bone metastasis and PGE2-induction of regulatory T cell migration. PLoS One. 2012;7(9):e46342.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Kuwano T, Nakao S, Yamamoto H, Tsuneyoshi M, Yamamoto T, Kuwano M, et al. Cyclooxygenase 2 is a key enzyme for inflammatory cytokine-induced angiogenesis. FASEB J. 2004;18(2):300–10.CrossRefPubMedGoogle Scholar
  56. 56.
    Michel F, Silvestre J-S, Waeckel L, Corda S, Verbeuren T, Vilaine JP, et al. Thromboxane A2/Prostaglandin H2 Receptor Activation Mediates Angiotensin II–Induced Postischemic Neovascularization. Arterioscler Thromb Vasc Biol. 2006;26(3):488–93.CrossRefPubMedGoogle Scholar
  57. 57.
    Romano M, Catalano A, Nutini M, D’urbano E, Crescenzi C, Claria J, et al. 5-Lipoxygenase regulates malignant mesothelial cell survival: involvement of vascular endothelial growth factor. FASEB J. 2001;15(13):2326–36.CrossRefPubMedGoogle Scholar
  58. 58.
    Brown N, Slater D, Alvi S, Elder M, Sullivan M, Bennett P. Expression of 5-lipoxygenase and 5-lipoxygenase-activating protein in human fetal membranes throughout pregnancy and at term. Mol Hum Reprod. 1999;5(7):668–74.CrossRefPubMedGoogle Scholar
  59. 59.
    Pouliot M, Mcdonald PP, Krump E, Mancini JA, Mccoll SR, Weech PK, et al. Colocalization of Cytosolic Phospholipase A2, 5-Lipoxygenase, and 5-Lipoxygenase-Activating Protein at the Nuclear Membrane of A23187-Stimulated Human Neutrophils. Eur J Biochem. 1996;238(1):250–8.CrossRefPubMedGoogle Scholar
  60. 60.
    Pidgeon GP, Lysaght J, Krishnamoorthy S, Reynolds JV, O’Byrne K, Nie D, et al. Lipoxygenase metabolism: roles in tumor progression and survival. Cancer Metastasis Rev. 2007;26(3–4):503–24.CrossRefPubMedGoogle Scholar
  61. 61.
    Ihara A, Wada K, Yoneda M, Fujisawa N, Takahashi H, Nakajima A. Blockade of leukotriene B4 signaling pathway induces apoptosis and suppresses cell proliferation in colon cancer. J Pharmacol Sci. 2007;103(1):24–32.CrossRefPubMedGoogle Scholar
  62. 62.
    Tong W-G, Ding X-Z, Adrian TE. The mechanisms of lipoxygenase inhibitor-induced apoptosis in human breast cancer cells. Biochem Biophys Res Commun. 2002;296(4):942–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Wong BCY, Wang WP, Cho CH, Fan XM, Lin MCM, Kung HF, et al. 12-Lipoxygenase inhibition induced apoptosis in human gastric cancer cells. Carcinogenesis. 2001;22(9):1349–54.CrossRefPubMedGoogle Scholar
  64. 64.
    Wallace JM. Nutritional and botanical modulation of the inflammatory cascade—eicosanoids, cyclooxygenases, and lipoxygenases—as an adjunct in cancer therapy. Integr Cancer Ther. 2002;1(1):7–37.PubMedGoogle Scholar
  65. 65.
    Paruchuri S, Hallberg B, Juhas M, Larsson C, Sjölander A. Leukotriene D4 activates MAPK through a Ras-independent but PKCϵ-dependent pathway in intestinal epithelial cells. J Cell Sci. 2002;115(9):1883–93.PubMedGoogle Scholar
  66. 66.
    Lee SH, Hu L-L, Gonzalez-Navajas J, Seo GS, Shen C, Brick J, et al. ERK activation drives intestinal tumorigenesis in Apcmin/+ mice. Nat Med. 2010;16(6):665–70.CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Mahshid Y. Biosynthesis and biological role of leukotrienes in B lymphocytes: Institutionen för medicinsk biokemi och biofysik (MBB)/Department of Medical Biochemistry and Biophysics; 2006.Google Scholar
  68. 68.
    Romano M, Clària J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: implications for cancer therapy. FASEB J. 2003;17(14):1986–95.CrossRefPubMedGoogle Scholar
  69. 69.
    Nieves D, Moreno JJ. Role of 5-lipoxygenase pathway in the regulation of RAW 264.7 macrophage proliferation. Biochem Pharmacol. 2006;72(8):1022–30.CrossRefPubMedGoogle Scholar
  70. 70.
    Wada K, Arita M, Nakajima A, Katayama K, Kudo C, Kamisaki Y, et al. Leukotriene B4 and lipoxin A4 are regulatory signals for neural stem cell proliferation and differentiation. FASEB J. 2006;20(11):1785–92.CrossRefPubMedGoogle Scholar
  71. 71.
    Zhou G, Ding X, Huang J, Zhang H, Wu S. Suppression of 5-lipoxygenase gene is involved in triptolide-induced apoptosis in pancreatic tumor cell lines. Biochimica et Biophysica Acta (BBA) Gener Subj 2007;1770(7):1021–7.Google Scholar
  72. 72.
    Wallace JL, McKnight W, Reuter BK, Vergnolle N. NSAID-induced gastric damage in rats: requirement for inhibition of both cyclooxygenase 1 and 2. Gastroenterology. 2000;119(3):706–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Brophy JM. Cardiovascular effects of cyclooxygenase-2 inhibitors. Curr Opin Gastroenterol. 2007;23(6):617–24.PubMedGoogle Scholar
  74. 74.
    Zhang R, Brown S, Guerrier K, Kassa A, Zhou Y, Gu X, et al. Cytotoxicity of lipoxygenase inhibitors towards prostate cancer cells in culture. Cancer Res. 2005;65(9 Supplement):1380.Google Scholar
  75. 75.
    Goossens L, Pommery N. Pierre Henichart J. COX-2/5-LOX dual acting anti-inflammatory drugs in cancer chemotherapy. Curr Top Med Chem. 2007;7(3):283–96.CrossRefPubMedGoogle Scholar
  76. 76.
    Claria J, Romano M. Pharmacological intervention of cyclooxygenase-2 and 5-lipoxygenase pathways. Impact on inflammation and cancer. Curr Pharm Des. 2005;11(26):3431–47.CrossRefPubMedGoogle Scholar
  77. 77.
    Cianchi F, Cortesini C, Magnelli L, Fanti E, Papucci L, Schiavone N, et al. Inhibition of 5-lipoxygenase by MK886 augments the antitumor activity of celecoxib in human colon cancer cells. Mol Cancer Ther. 2006;5(11):2716–26.CrossRefPubMedGoogle Scholar
  78. 78.
    Howe LR, Subbaramaiah K, Patel J, Masferrer JL, Deora A, Hudis C, et al. Celecoxib, a selective cyclooxygenase 2 inhibitor, protects against human epidermal growth factor receptor 2 (HER-2)/neu-induced breast cancer. Cancer Res. 2002;62(19):5405–7.PubMedGoogle Scholar
  79. 79.
    Tamura M, Deb S, Sebastian S, Okamura K, Bulun SE. Estrogen up-regulates cyclooxygenase-2 via estrogen receptor in human uterine microvascular endothelial cells. Fertil Steril. 2004;81(5):1351–6.CrossRefPubMedGoogle Scholar
  80. 80.
    Ferrandina G, Ranelletti FO, Gallotta V, Martinelli E, Zannoni GF, Gessi M, et al. Expression of cyclooxygenase-2 (COX-2), receptors for estrogen (ER), and progesterone (PR), p53, ki67, and neu protein in endometrial cancer. Gynecol Oncol. 2005;98(3):383–9.CrossRefPubMedGoogle Scholar
  81. 81.
    Simeone A-M, Li Y-J, Broemeling LD, Johnson MM, Tuna M, Tari AM. Cyclooxygenase-2 is essential for HER2/neu to suppress N-(4-hydroxyphenyl) retinamide apoptotic effects in breast cancer cells. Cancer Res. 2004;64(4):1224–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2016

Authors and Affiliations

  • Swetlana Gautam
    • 1
  • Subhadeep Roy
    • 1
  • Mohd Nazam Ansari
    • 2
  • Abdulaziz S. Saeedan
    • 2
  • Shubhini A. Saraf
    • 1
  • Gaurav Kaithwas
    • 1
  1. 1.Department of Pharmaceutical Sciences, School of Biosciences and BiotechnologyBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  2. 2.Department of Pharmacology, College of PharmacyPrince Sattam Bin Abdulaziz UniversityAl-KharjKingdom of Saudi Arabia

Personalised recommendations