Breast Cancer

, Volume 24, Issue 2, pp 326–335

KLF4 and NANOG are prognostic biomarkers for triple-negative breast cancer

  • Takuya Nagata
  • Yutaka Shimada
  • Shinichi Sekine
  • Makoto Moriyama
  • Isaya Hashimoto
  • Koshi Matsui
  • Tomoyuki Okumura
  • Takashi Hori
  • Johji Imura
  • Kazuhiro Tsukada
Original Article

Abstract

Background

Prognosis of breast cancer patients has been reported to depend on the expression of induced pluripotent stem (iPS) cell-inducing factors: KLF4 and NANOG. However, the relationship between KLF4 or NANOG expression in each breast cancer subtype and the life prognosis has not been elucidated.

Method

KLF4 and NANOG expression levels were evaluated in 208 patients using a newly developed tissue microarray (TMA). In vitro, siRNA against klf4 (siKLF4) was transfected in TNBC cell line MDA-MB-231, and the expression of KLF4 was inhibited.

Results

Triple-negative breast cancer (TNBC) patients in KLF4 high-expression (upper) group had more favorable overall survival (OS) and disease-free survival (DFS) rates than KLF4 lower group (p = 0.0453 and p = 0.0427). In contrast, patients in the NANOG upper group had significantly poorer prognosis than lower group in TNBC breast cancer subtypes (p < 0.0001). Multivariate analysis showed that KLF4 (p = 0.0313), NANOG (p = 0.0002), and TNM stage (p = 0.0001) are mutually independent prognostic factors. It was also shown that the proliferation and invasion ability of siKLF4-induced TNBC cells were up-regulated significantly.

Conclusion

Our findings suggested that KLF4 and NANOG expression levels were favorable prognostic factors for TNBC patients. KLF4 also had an ability to inhibit the proliferation and invasion of TNBC.

Keywords

Breast cancer NANOG KLF4 

Abbreviations

TNBC

Triple-negative breast cancer

siRNA

Small interfering RNA

References

  1. 1.
    Prat A, Parker JS, Karginova O, Fan C, Livasy C, Hershkowitz JI, He X, Perou CM. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res. 2010;12:R68.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Rouzier R, Perou CM, Symmans WF, Ibrahim N, Cristofanilli M, Anderson K, Hess KR, Stec J, Ayers M, Wagner P, et al. Breast cancer molecular subtypes respond differently to preoperative chemotherapy. Clin Cancer Res. 2005;11:5678–85.CrossRefPubMedGoogle Scholar
  3. 3.
    Goldhirsch A, Wood WC, Coates AS, Gelber RD, Thurlimann B. Strategies for subtypes-dealing with the diversity of breast cancer: highlights of the St Gallen International Expert Consensus on the Primary Therapy of Early Breast Cancer 2011. Ann Oncol. 2011;22:1736–47.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Cadoo KA, Fornier MN, Morris PG. Biological subtypes of breast cancer: current concepts and implications for recurrence patterns. Q J Nucl Med Mol Imaging. 2013;57:312–21.PubMedGoogle Scholar
  5. 5.
    Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Ezeh UI, Turek PJ, Reijo RA, Clark AT. Human embryonic stem cell genes OCT4, NANOG, STELLAR, and GDF3 are expressed in both seminoma and breast carcinoma. Cancer. 2005;104:2255–65.CrossRefPubMedGoogle Scholar
  7. 7.
    Deming SL, Nass SJ, Dickson RB, Trock BJ. C-myc amplification in breast cancer: a meta-analysis of its occurrence and prognostic relevance. Br J Cancer. 2000;83:1688–95.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nagata T, Shimada Y, Sekine S, Hori R, Matsui K, Okumura T, Sawada S, Fukuoka J, Tsukada K. Prognostic significance of NANOG and KLF4 for breast cancer. Breast Cancer. 2014;21:96–101.CrossRefPubMedGoogle Scholar
  9. 9.
    Lin NU, Vanderplas A, Hughes ME, Theriault RL, Edge SB, Wong YN, Wong YN, Blayney DW, Niland JC, Winer EP, Weeks JC. Clinicopathologic features, patterns of recurrence, and survival among women with triple-negative breast cancer in the National Comprehensive Cancer Network. Cancer. 2012;118:5463–72.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Liedtke C, Mazouni C, Hess KR, André F, Tordai A, Mejia JA, Symmans WF, Gonzales-Angulo AM, Hennessy B, Green M. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.CrossRefPubMedGoogle Scholar
  11. 11.
    Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109:1721–8.CrossRefPubMedGoogle Scholar
  12. 12.
    Al-Haji M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA. 2003;100:3983–8.CrossRefGoogle Scholar
  13. 13.
    Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133:704–15.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Yori JL, Johnson E, Zhou G, Jain MK, Keri RA. Kruppel-like factor 4 inhibits epithelial-to-mesenchymal transition through regulation of E-cadherin gene expression. J Biol Chem. 2010;285:16854–63.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tiwari N, Meyer-Schaller N, Arnold P, Antoniadis H, Pachkov M, et al. Klf4 is a transcriptional regulator of genes critical for EMT, including Jnk1 (Mapk8). PLoS One. 2013;8:e57329.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Wernig M, Meissner A, Foreman R, Brambrink T, Ku M, Hochedilinger K, Bemstein BE, Jaenisch R. In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature. 2007;448:318–24.CrossRefPubMedGoogle Scholar
  17. 17.
    Segre JA, Bauer C, Fuchs E. Klf4 is a transcription factor required for establishing the barrier function of the skin. Nat Genet. 1999;22:356–60.CrossRefPubMedGoogle Scholar
  18. 18.
    Foster KW, Frost AR, McKie-Bell P, Lin CY, Engler JA, Grizzle WE, Ruppert JM. Increase of GKLF messenger RNA and protein expression during progression of breast cancer. Cancer Res. 2000;60:6488–95.PubMedGoogle Scholar
  19. 19.
    Foster KW, Liu Z, Nail CD, Li X, Fitzgerald TJ, Biley SK, Frost AR, Louro ID, Townes TM, Paterson AJ. Induction of KLF4 in basal keratinocytes blocks the proliferation-differentiation switch and initiates squamous epithelial dysplasia. Oncogene. 2005;24:1491–500.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Foster KW, Ren S, Louro ID, Lobo-Ruppert SM, McKie-Bell P, Grizzle W, Heyes MR, Broker TR, Chow LT, Ruppert JM. Oncogene expression cloning by retroviral transduction of adenovirus E1A-immortalized rat kidney RK3E cells: transformation of a host with epithelial features by c-MYC and the zinc finger protein GKLF. Cell Growth Diff. 1999;10:423–34.PubMedGoogle Scholar
  21. 21.
    Yu F, Li J, Chen H, Fu J, Ray S, Huang S, Zheng H, Ai W. Kruppel-like factor 4 (KLF4) is required for maintenance of breast cancer stem cells and for cell migration and invasion. Oncogene. 2011;30:2161–72.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Wei D, Gong W, Kanai M, Schlunk C, Wang L, Yao JC, Wu TT, Huang S, Xie K. Drastic down-regulation of Kruppel-like factor 4 expression is critical in human gastric cancer development and progression. Cancer Res. 2005;65:2746–54.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhao W, Hisamuddin IM, Nandan MO, Babbin BA, Lamb NE, Yang VW. Identification of Kruppel-like factor 4 as a potential tumor suppressor gene in colorectal cancer. Oncogene. 2004;23:395–402.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Akaogi K, Nakajima Y, Ito I, Kawasaki S, Oie SH, Murayama A, Kimura K, Yanagisawa J. KLF4 suppresses estrogen-dependent breast cancer growth by inhibiting the transcriptional activity of ERalpha. Oncogene. 2009;28:2894–902.CrossRefPubMedGoogle Scholar
  25. 25.
    Rowland BD, Bernards R, Peeper DS. The KLF4 tumor suppressor is a transcriptional repressor of p53 that acts as a context-dependent oncogene. Nat Cell Biol. 2005;7:1074–82.CrossRefPubMedGoogle Scholar
  26. 26.
    Rodda DJ, Chew JL, Lim LH, Loh YH, Wang B, Ng HH, et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem. 2005;280:24731–7.CrossRefPubMedGoogle Scholar
  27. 27.
    Jeter CR, Badeaux M, Choy G, Chandra D, Patrawala L, Liu C, Calhoun-Davis T, Zaehres H, Daley GQ, Tang DG. Functional evidence that the self-renewal gene NANOG regulates human tumor development. Stem Cells. 2009;27:993–1005.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Siu MK, Wong ES, Chan HY, Ngan HY, Chan KY, Cheung AN. Overexpression of NANOG in gestational trophoblastic diseases: effect on apoptosis, cell invasion, and clinical outcome. Am J Pathol. 2008;173:1165–72.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lu X, Mazur SJ, Lin T, Appella E, Xu Y. The pluripotency factor nanog promotes breast cancer tumorigenesis and metastasis. Oncogene. 2014;33:2655–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Liao WY, Liaw CC, Huang YC, Han HY, Hsu HW, Hwang SM, Kuo SC, Shen CN. Cyclohexylmethyl flavonoids suppress propagation of breast cancer stem cells via downregulation of NANOG. Evid Based Complement Alternat Med. 2013;2013:170261.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Han J, Zhang F, Yu M, Zhao P, Ji W, Zhang H, Wu B, Wang Y, Niu R. RNA interference-mediated silencing of NANOG reduces cell proliferation and induces G0/G1 cell cycle arrest in breast cancer cells. Cancer Lett. 2012;321:80–8.CrossRefPubMedGoogle Scholar
  32. 32.
    Ling GQ, Chen DB, Wang BQ, Zhang LS. Expression of the pluripotency markers Oct3/4, Nanog and Sox2 in human breast cancer cell lines. Oncol Lett. 2012;4:1264–8.PubMedPubMedCentralGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2016

Authors and Affiliations

  • Takuya Nagata
    • 1
  • Yutaka Shimada
    • 2
  • Shinichi Sekine
    • 1
  • Makoto Moriyama
    • 1
  • Isaya Hashimoto
    • 1
  • Koshi Matsui
    • 1
  • Tomoyuki Okumura
    • 1
  • Takashi Hori
    • 3
  • Johji Imura
    • 3
  • Kazuhiro Tsukada
    • 1
  1. 1.Department of Surgery and Science, Graduate school of Medicine and Pharmaceutical Sciences for ResearchUniversity of ToyamaToyamaJapan
  2. 2.Department of Nanobio Drug Discovery, Graduate School of Pharmaceutical SciencesKyoto UniversityKyotoJapan
  3. 3.Department of Pathology, Graduate School of Research Into Medicine and Pharmaceutical SciencesUniversity of ToyamaToyamaJapan

Personalised recommendations