Breast Cancer

, Volume 24, Issue 2, pp 229–237

Association of BRCA1, BRCA2, RAD51, and HER2 gene polymorphisms with the breast cancer risk in the Bangladeshi population

  • Salma Parvin
  • Md. Siddiqul Islam
  • Mir Md. Abdullah Al-Mamun
  • Mohammad Safiqul Islam
  • Maizbha Uddin Ahmed
  • Eva Rahman Kabir
  • Abul Hasnat
Original Article



Breast cancer is considered as the most frequent female malignancy. Altered gene expressions due to genetic polymorphisms in the BRCA1, BRCA2, RAD51, and HER2 contribute toward the development of breast cancer, and yet, no such type of study has been conducted in the Bangladeshi population. This study was designed to evaluate the role of BRCA1rs80357713, BRCA1rs80357906, BRCA2rs11571653, RAD51rs1801320, and HER2rs1136201 polymorphisms as risk factors in the development of breast cancer in the Bangladeshi population.


A total 310 patients with invasive breast cancers were recruited as cases from different public and private hospitals of Bangladesh, and 250 Bangladeshi healthy women matching age with the patients were recruited as controls. Polymerase chain reaction–restriction fragment length polymorphism method was used to analyze the genetic polymorphisms.


Patients carrying BRCA1/2 mutations, GC and GC plus CC genotypes of RAD51rs1801320, and AG plus GG genotype of HER2rs1136201 polymorphisms were found to be associated with breast cancer. In subgroup analysis, AG plus GG genotype of HER2rs1136201 was found to be associated with the breast cancer risk in the patients younger than 45 years of age compared with the older patients having more than 45 years of age, and RAD51rs1801320 was related to the tumor size and tumor aggressiveness (higher graded tumor).


Our results indicate that BRCA1/BRCA2, RAD51rs1801320 and HER2rs1136201 polymorphisms were associated with breast cancer in the studied population.


BRCA1 BRCA2 Breast cancer HER2 RAD51 


  1. 1.
    Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, Mathers C, et al. GLOBOCAN 2012 v1.0, Cancer incidence and mortality worldwide: IARC CancerBase. 11th ed. Lyon: International Agency for Research on Cancer. 2013. Accessed 15 February 2015.
  2. 2.
    Islam MS, Islam MS, Parvin S, Ahmed MU, Bin Sayeed MS, Uddin MMN, et al. Effect of GSTP1 and ABCC4 gene polymorphisms on response and toxicity of cyclophosphamide-epirubicin-5-fluorouracil-based chemotherapy in Bangladeshi breast cancer patients. Tumour Biol. 2015;36(7):5451–7.CrossRefPubMedGoogle Scholar
  3. 3.
    Corcos D. Unbalanced replication as a major source of genetic instability in cancer cells. Am J Blood Res. 2012;2(3):160–9.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Cipollini G, Tommasi S, Paradiso A, Aretini P, Bonatti F, Brunetti I, et al. Genetic alterations in hereditary breast cancer. Ann Oncol. 2004;15(Suppl 1):I7–13.CrossRefPubMedGoogle Scholar
  5. 5.
    Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, et al. Linkage of early-onset familial breast cancer to chromosome 17q21. Science. 1990;250(4988):1684–9.CrossRefPubMedGoogle Scholar
  6. 6.
    Petrucelli N, Daly MB, Feldman GL.BRCA1 and BRCA2 Hereditary Breast and Ovarian Cancer. 1998 Sep 04 [updated 2013 Sep 26]. In: Pagon RA, Adam MP, Ardinger HH, Wallace SE, Amemiya A, Bean LJH, et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle 1993–2015. Accessed 15 February 2015.
  7. 7.
    Janavičius R, Rudaitis V, Mickys U, Elsakov P, Griškevičius L. Comprehensive BRCA1 and BRCA2 mutational profile in Lithuania. Cancer Genet. 2014;207(5):195–205.CrossRefPubMedGoogle Scholar
  8. 8.
    Riahi A, Kharrat M, Ghourabi ME, Khomsi F, Gamoudi A, Lariani I, et al. Mutation spectrum and prevalence of BRCA1 and BRCA2 genes in patients with familial and early-onset breast/ovarian cancer from Tunisia. Clin Genet. 2015;87(2):155–60.CrossRefPubMedGoogle Scholar
  9. 9.
    Richardson C. RAD51, genomic stability, and tumorigenesis. Cancer Lett. 2005;218(2):127–39.CrossRefPubMedGoogle Scholar
  10. 10.
    Lu S, Wang Z, Liu H, Hao X. HER2 Ile655 Val polymorphism contributes to breast cancer risk: evidence from 27 case-control studies. Breast Cancer Res Treat. 2010;124(3):771–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Yu KD, Yang C, Fan L, Chen AX, Shao ZM. RAD51 135G>C does not modify breast cancer risk in non-BRCA1/2 mutation carriers: evidence from a meta-analysis of 12 studies. Breast Cancer Res Treat. 2011;126(2):365–71.CrossRefPubMedGoogle Scholar
  12. 12.
    Xie D, Shu XO, Deng Z, Wen WQ, Creek KE, Dai Q, et al. Population-based, case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2000;92(5):412–7.CrossRefPubMedGoogle Scholar
  13. 13.
    Dahabreh IJ, Murray S. Lack of replication for the association between HER2 I655V polymorphism and breast cancer risk: a systematic review and meta-analysis. Cancer Epidemiol. 2011;35(6):503–9.CrossRefPubMedGoogle Scholar
  14. 14.
    Ma Y, Yang J, Zhang P, Liu Z, Yang Z, Qin H. Lack of association between HER2 codon 655 polymorphism and breast cancer susceptibility: meta-analysis of 22 studies involving 19341 subjects. Breast Cancer Res Treat. 2011;125(1):237–41.CrossRefPubMedGoogle Scholar
  15. 15.
    Islam MS, Ahmed MU, Sayeed MS, Maruf AA, Mostofa AG, Hussain SM, et al. Lung cancer risk in relation to nicotinic acetylcholine receptor, CYP2A6 and CYP1A1 genotypes in the Bangladeshi population. Clin Chim Acta. 2013;416:11–9.CrossRefPubMedGoogle Scholar
  16. 16.
    Tao W, Wang C, Han R, Jiang H. HER2 codon 655 polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat. 2009;114(2):371–6.CrossRefPubMedGoogle Scholar
  17. 17.
    World Medical Association Declaration of Helsinki. Ethical principles for medical research involving human subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 59th WMA General Assembly Seoul, South Korea, 2008.Google Scholar
  18. 18.
    Islam MS, Mostofa AG, Ahmed MU. Bin Sayeed MS, Hassan MR, Hasnat A. Association of CYP3A4, CYP3A5 polymorphisms with lung cancer risk in Bangladeshi population. Tumour Biol. 2014;35(2):1671–8.CrossRefPubMedGoogle Scholar
  19. 19.
    Rohlfs EM, Learning WG, Friedman KJ, Couch FJ, Weber BL, Silverman LM. Direct detection of mutations in the breast and ovarian cancer susceptibility gene BRCA1 by PCR-mediated site-directed mutagenesis. Clin Chem. 1997;43(1):24–9.PubMedGoogle Scholar
  20. 20.
    Haytural H, Yalcinkaya N, Akan G, Arikan S, Ozkok E, Cakmakoglu B, et al. Identification of a novel BRCA2 and CHEK2 A-C-G-C haplotype in Turkish patients affected with breast cancer. Asian Pac J Cancer Prev. 2013;14(5):3229–35.CrossRefPubMedGoogle Scholar
  21. 21.
    Brooks J, Shore RE, Zeleniuch-Jacquotte A, Currie D, Afanasyeva Y, Koenig KL, et al. Polymorphisms in RAD51, XRCC2, and XRCC3 are not related to breast cancer risk. Cancer Epidemiol Biomarkers Prev. 2008;17(4):1016–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Chan KY, Cheung AN, Yip SP, Ko HH, Lai TW, Khoo US. Population-based case-control study of HER2 genetic polymorphism and breast cancer risk. J Natl Cancer Inst. 2002;94(20):1581–2.CrossRefPubMedGoogle Scholar
  23. 23.
    Levy-Lahad E, Friedman E. Cancer risks among BRCA1 and BRCA2 mutation carriers. Br J Cancer. 2007;96(1):11–5.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Vaidyanathan K, Lakhotia S, Ravishankar HM, Tabassum U, Mukherjee G, Somasundaram K. BRCA1 and BRCA2 germline mutation analysis among Indian women from south India: identification of four novel mutations and high-frequency occurrence of 185delAG mutation. J Biosci. 2009;34(3):415–22.CrossRefPubMedGoogle Scholar
  25. 25.
    Sokolenko AP, Mitiushkina NV, Buslov KG, Bit-Sava EM, Iyevleva AG, Chekmariova EV, et al. High frequency of BRCA1 5382insC mutation in Russian breast cancer patients. Eur J Cancer. 2006;42(10):1380–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Kumar BV, Lakhotia S, Ankathil R, Madhavan J, Jayaprakash PG, Nair MK, et al. Germline BRCA1 mutation analysis in Indian breast/ovarian cancer families. Cancer Biol Ther. 2002;1(1):18–21.CrossRefPubMedGoogle Scholar
  27. 27.
    Saxena S, Chakraborty A, Kaushal M, Kotwal S, Bhatanager D, Mohil RS, et al. Contribution of germline BRCA1 and BRCA2 sequence alterations to breast cancer in Northern India. BMC Med Genet. 2006;7:75.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Yu Z, Chen J, Ford BN, Brackley ME, Glickman BW. Human DNA repair systems: an overview. Environ Mol Mutagen. 1999;33(1):3–20.CrossRefPubMedGoogle Scholar
  29. 29.
    Krajinovic M, Labuda D, Mathonnet G, Labuda M, Moghrabi A, Champagne J, et al. Polymorphisms in genes encoding drugs and xenobiotic metabolizing enzymes, DNA repair enzymes, and response to treatment of childhood acute lymphoblastic leukemia. Clin Cancer Res. 2002;8(3):802–10.PubMedGoogle Scholar
  30. 30.
    Thacker J. The RAD51 gene family, genetic instability and cancer. Cancer Lett. 2005;219(2):125–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Gao LB, Pan XM, Li LJ, Liang WB, Zhu Y, Zhang LS, et al. RAD51 135G/C polymorphism and breast cancer risk: a meta-analysis from 21 studies. Breast Cancer Res Treat. 2011;125(3):827–35.CrossRefPubMedGoogle Scholar
  32. 32.
    Wang Z, Dong H, Fu Y. Ding H.nRAD51 135 G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects. Breast Cancer Res Treat. 2010;124(3):765–9.CrossRefPubMedGoogle Scholar
  33. 33.
    Wang W, Li JL, He XF, Li AP, Cai YL, Xu N, et al. Association between the RAD51 135 G>C polymorphism and risk of cancer: a meta-analysis of 19068 cases and 22630 controls. PLoS One. 2013;8(9):e75153.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Blasiak J, Przybyłowska K, Czechowska A, Zadrozny M, Pertyński T, Rykała J, et al. Analysis of the G/C polymorphism in the 5’-untranslated region of the RAD51 gene in breast cancer. Acta Biochim Pol. 2003;50(1):249–53.PubMedGoogle Scholar
  35. 35.
    Romanowicz-Makowska H, Smolarz B, Samulak D, Michalska M, Lewy J, Burzyński M, et al. A single nucleotide polymorphism in the 5’ untranslated region of RAD51 and ovarian cancer risk in Polish women. Eur J Gynaecol Oncol. 2012;33(4):406–10.PubMedGoogle Scholar
  36. 36.
    Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, et al. DNA repair polymorphisms might contribute differentially on familial and sporadic breast cancer susceptibility: a study on a Portuguese population. Breast Cancer Res Treat. 2007;103(2):209–17.CrossRefPubMedGoogle Scholar
  37. 37.
    Costa S, Pinto D, Pereira D, Rodrigues H, Cameselle-Teijeiro J, Medeiros R, et al. XRCC1, Arg399Gln and RAD51 5’UTR G135C polymorphisms and their outcome in tumor aggressiveness and survival of Portuguese breast cancer patients. Breast Cancer Res Treat. 2008;109(1):183–5.CrossRefPubMedGoogle Scholar
  38. 38.
    Montgomery KG, Gertig DM, Baxter SW, Milne RL, Dite GS, McCredie MR, et al. The HER2 I655 V polymorphism and risk of breast cancer in women <age 40 years. Cancer Epidemiol Biomarkers Prev. 2003;12(10):1109–11.PubMedGoogle Scholar
  39. 39.
    Chen W, Yang H, Tang WR, Feng SJ, Wei YL. Updated meta-analysis on HER2 polymorphisms and risk of breast cancer: evidence from 32 studies. Asian Pac J Cancer Prev. 2014;15(22):9643–7.CrossRefPubMedGoogle Scholar
  40. 40.
    Lee-Hoeflich ST, Crocker L, Yao E, Pham T, Munroe X, Munroe X, et al. A central role for HER3 in HER2-amplified breast cancer: implications for targeted therapy. Cancer Res. 2008;68(14):5878–87.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2016

Authors and Affiliations

  • Salma Parvin
    • 1
  • Md. Siddiqul Islam
    • 1
  • Mir Md. Abdullah Al-Mamun
    • 1
  • Mohammad Safiqul Islam
    • 2
  • Maizbha Uddin Ahmed
    • 1
  • Eva Rahman Kabir
    • 3
  • Abul Hasnat
    • 1
  1. 1.Department of Clinical Pharmacy and Pharmacology, Faculty of PharmacyUniversity of DhakaDhakaBangladesh
  2. 2.Department of PharmacyNoakhali Science and Technology UniversitySonapur, NoakhaliBangladesh
  3. 3.Department of PharmacyBRAC UniversityDhakaBangladesh

Personalised recommendations