Breast Cancer

, Volume 22, Issue 2, pp 117–128 | Cite as

Prognostic impact of CD10 expression in clinical outcome of invasive breast carcinoma

  • Thi-Ngoc Diem Vo
  • Eiji MekataEmail author
  • Tomoko Umeda
  • Hajime Abe
  • Yuki Kawai
  • Tsuyoshi Mori
  • Yoshihiro Kubota
  • Hisanori Shiomi
  • Shigeyuki Naka
  • Tomoharu Shimizu
  • Satoshi Murata
  • Hiroshi Yamamoto
  • Mitsuaki Ishida
  • Tohru Tani
Original Article



Early diagnosis and treatment for breast cancers has greatly improved in recent years, however, subset of this disease with early recurrence have remained to be unpredictable. Several studies has addressed that strong CD10 expression in tumor stroma is associated with poor survival rate of breast cancers, but no correlation between CD10 expression and disease-free survival has been elucidated yet. For these reasons, this study with modified immunohistochemical (IHC) staining evaluated the expression of CD10 in invasive breast carcinomas (IBCs) and analyzed correlations between CD10 expression on tumor cells, stromal cells and myeloid-like cells with clinicopathological parameters and recurrence status.


IHC staining method was performed on formalin-fixed paraffin-embedded sections of 73 cases of primary IBCs, with record of pathological characteristics of subjects followed up from 1998 to 2007.


Stromal CD10 expression was observed in 39/73 cases (53.4 %) with strong expression in 41.0 %. Three cases stained positive for myeloid-like cells and five for carcinomatous cells, of which 6 cases had recurrence and/or regional LN status. Stromal CD10 expression was significantly higher in the unfavorable group (69.6 %; 16/23 cases) compared with the favorable group (32.1 %; 9/28 cases) (p = 0.048). The levels of CD10 expression showed significant difference among clinical outcomes (recurrence or non-recurrence), independent of regional LN status (p = 0.034), histology type (p = 0.044), ER status (p = 0.042), PgR status (p = 0.039), Her2 status (p = 0.038) and Ki67 index (p = 0.036) (partial Pearson correlations). Cox proportional-hazards regression showed that risk factors for disease-free survival were stromal CD10 expression [CD10±, CD10+ versus CD10++; p = 0.003; HR 2.824 (1.427–5.591)]; regional LN status [N0, N1, N2, versus N3; p = 0.004; HR 2.107 (1.262–3.517)] and PgR status [negative versus positive, p = 0.006, HR 0.172 (0.049–0.596)].


CD10 expression on stroma with or without other positive tumor cells and/or myeloid-like cells may function as a powerful prognostic factor for IBC disease-free survival rates, predicting of potential recurrence. It can be determined by a simple modified IHC staining method, which is independent of other prognostic morphologic markers and biomarkers in IBC.


CD10± (negative or very weakly positive staining) CD10+ (weakly positive staining) CD10++ (strongly positive staining) Invasive breast carcinoma (IBC) Lymph-node (LN) 



We are grateful for the cooperation of all clinicians and technicians of our departments in contributing samples, for follow-up clinicopathological data and for technical support. In particular, we thank Professor Hiroyuki Sugihara and Associate Professor Ken-ichi Mukaisho (Pathology Department, Shiga University of Medical Science) for critical discussion and efficient facilities.

Conflict of interest

The authors declare that they have no conflict of interests in the article.


  1. 1.
    Saika K, Sobue T. Epidemiology of breast cancer in Japan and the US. JAMA. 2009;52(1):39–44.Google Scholar
  2. 2.
    Elston WC, Ellis OI, Pinder ES. Pathological prognostic factors in breast cancer. Crit Rev Oncol Hematol. 1999;31:209–23.CrossRefPubMedGoogle Scholar
  3. 3.
    Mueller MM, Fusenig NE. Friends or foes—bipolar effects of the tumor stroma in cancer. Nat Rev Cancer. 2004;4:839–49.CrossRefPubMedGoogle Scholar
  4. 4.
    Edwards MJ, Bonadonna G, Valagussa P, Gamel JW. End points in the analysis of breast cancer survival: relapse versus death from tumor. Surgery. 1998;124:197–202.CrossRefPubMedGoogle Scholar
  5. 5.
    Maguer-Satta V, Besançon R, Bachelard-Cascales E. Concise review: neutral endopeptidase (CD10): a multifaceted environment actor in stem cells, physiological mechanisms, and cancer. Stem Cells. 2011;29:389–96.CrossRefPubMedGoogle Scholar
  6. 6.
    Letarte M, Vera S, Tran R, Addis JB, Onizuka RJ, Quackenbush EJ, et al. Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med. 1988;168:1247–53.CrossRefPubMedGoogle Scholar
  7. 7.
    Shipp MA, Vijayaraghavan J, Schmidt EV, Masteller EL, D’Adamio L, Hersh LB, et al. Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (‘enkephalinase’): direct evidence by cDNA transfection analysis. Proc Natl Acad Sci. 1989;86:297–301.Google Scholar
  8. 8.
    Koehn JA, Norman JA, Jones BN, LeSoeur L, Sakane Y, Ghai RD. Degradation of atrial natriuretic factor by kidney cortex membranes. J Biol Chem. 1987;262:11623–7.PubMedGoogle Scholar
  9. 9.
    Stephenson SL, Kenny AJ. The hydrolysis of human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J. 1987;243:183–7.PubMedCentralPubMedGoogle Scholar
  10. 10.
    Yasuda M, Itoh J, Satoh Y, Kumaki N, Tsukinoki K, Ogane N, Osamura RY. Availability of CD10 as a histopathological diagnostic marker. Acta Histochem Cytochem. 2005;38(1):17–24.CrossRefGoogle Scholar
  11. 11.
    Terauchi M, Kajiyama H, Shibata K, Ino K, Mizutani S, Kikkawa F. Anti-progressive effect of neutral endopeptidase 24.11 (NEP/CD10) on cervical carcinoma in vitro and in vivo. Oncology. 2005;69:52–62.CrossRefPubMedGoogle Scholar
  12. 12.
    Tokuhara T, Adachi M, Hashida H, Ishida H, Taki T, Higashiyama M, et al. Neutral endopeptidase/CD10 and aminopeptidase N/CD13 gene expression as a prognostic factor in non-small cell lung cancer. Jpn J Thorac Cardiovasc Surg. 2001;49:489–96.CrossRefPubMedGoogle Scholar
  13. 13.
    Huang WB, Zhou XJ, Chen JY, Zhang LH, Meng K, Ma HH, et al. CD10-positive stromal cells in gastric carcinoma: correlation with invasion and metastasis. Jpn J Clin Oncol. 2005;35:245–50.CrossRefPubMedGoogle Scholar
  14. 14.
    Deschamps L, Handra-Luca A, O’Toole D, Sauvanet A, Ruszniewski P, Belghiti J, et al. CD10 expression in pancreatic endocrine tumors: correlation with prognostic factors and survival. Hum Pathol. 2006;37:802–8.CrossRefPubMedGoogle Scholar
  15. 15.
    Khanh Do T, Mekata E, Mukaisho K. Prognostic role of CD10+ myeloid cells in association with tumor budding at the invasion front of colorectal cancer. Cancer Sci. 2011;102(9):1724–33.Google Scholar
  16. 16.
    Fujita S, Taniguchi H, Yao T, Shimoda T, Ueno H, Hirai T, et al. Multi-institutional study of risk factors of liver metastasis from colorectal cancer: correlation with CD10 expression. Int J Colorectal Dis. 2010;25:681–6.CrossRefPubMedGoogle Scholar
  17. 17.
    Piattelli A, Fioroni M, Iezzi G, Perrotti V, Stellini E, Piattelli M, et al. CD10 expression in stromal cells of oral cavity squamous cell carcinoma: a clinic and pathologic correlation. Oral Dis. 2006;12:301–4.CrossRefPubMedGoogle Scholar
  18. 18.
    Yada K, Kashima K, Daa T, Kitano S, Fujiwara S, Yokoyama S. Expression of CD10 in basal cell carcinoma. Am J Dermatopathol. 2004;26:463–71.CrossRefPubMedGoogle Scholar
  19. 19.
    Smollich M, Gotte M, Yip WG, Yong E-S, Kersting C, et al. On the role of endothelin-converting enzyme-1 (ECE-1) and neprilysin in human breast cancer. Breast Cancer Res Treat. 2007;106:361–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Iwaya K, Ogawa H, Izumi M, Kuroda M, Mukai K. Stromal expression of CD10 in invasive breast carcinoma: a new predictor of clinical outcome. Virchows Arch. 2002;440(6):589–93.CrossRefPubMedGoogle Scholar
  21. 21.
    Makretsov NA, Hayes M, Carter BA, Dabiri S, Gilks CB, Huntsman DG. Stromal CD10 expression in invasive breast carcinoma correlates with poor prognosis, estrogen receptor negativity, and high grade. Mod Pathol. 2007;20(1):84–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Kim HS, Kim GY, Kim YW, Park YK, Song JY, Lim SJ. Stromal CD10 expression and relationship to the E-cadherin/b-catenin complex in breast carcinoma. Histopathology. 2010;56:708–19.CrossRefPubMedGoogle Scholar
  23. 23.
    Hammond ME, Hayes DF, Dowsett M, Allred DC, Hagerty KL, et al. American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. J Clin Oncol. 2010;28(16):2784–95.Google Scholar
  24. 24.
    Wolff AC, Hammond ME, Schwartz JN, Hagerty KL, Allred DC, Cote RJ, et al. American Society of Clinical Oncology/College of American pathologists guideline recommendations for human epidermal growth factor receptor 2 testing in breast cancer. J Clin Oncol. 2007;25(1):118–45.Google Scholar
  25. 25.
    Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA. Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol. 2010;11:174–83.CrossRefPubMedGoogle Scholar
  26. 26.
    Fasching PA, Heusinger K, Haeberle L, Niklos M, Hein A, Bayer CM, et al. Ki67, chemotherapy response, and prognosis in breast cancer patients receiving neoadjuvant treatment. BMC Cancer. 2011;11:486.Google Scholar
  27. 27.
    Ellis IO, Galea M, Broughton N, Locker A, Blamey RW, Elston CW. Pathological prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1992;19:403–10.Google Scholar
  28. 28.
    Kono S, Sunagawa Y, Higa H, Sunagawa H. Age of menopause in Japanese women: trends and recent changes. Maturitas. 1990;12(1):43–9.CrossRefPubMedGoogle Scholar
  29. 29.
    Moritani S, Kushima R, Sugihara H, Bamba M, Kobayashi TK, Hattori T. Availability of CD10 immunohistochemistry as a marker of breast myoepithelial cells on paraffin sections. Mod Pathol. 2002;15(4):397–405.CrossRefPubMedGoogle Scholar
  30. 30.
    Kalof AN, Tam D, Beatty B, Cooper K. Immunostaining patterns of myoepithelial cells in breast lesions: a comparison of CD10 and smooth muscle myosin heavy chain. J Clin Pathol. 2004;57(6):625–9.CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Dewar R, Fadare O, Gilmor H, Gown AM. Best practices in diagnostic immunohistochemistry myoepithelial markers in breast pathology. Arch Pathol Lab Med. 2011;135:422–9.PubMedGoogle Scholar
  32. 32.
    Eifel P, Axelson JA, Costa J, Crowley J, Curran WJ Jr, Deshler A, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1–3, 2000. J Natl Cancer Inst. 2001;93(13):979–89.CrossRefPubMedGoogle Scholar
  33. 33.
    Salani D, Castro VD, Nicotra MR, Rosano L, Tecce R, Venuti A, et al. Role of endothelin-1 in neovascularization of ovarian carcinoma. Am J Pathol. 2000;157(5):1537–47.Google Scholar
  34. 34.
    Toussaint J, Durbecq V, Altintas S, Doriath V, Rouas G, Paesmans M, et al. Low CD10 mRNA expression identifies high-risk ductal carcinoma in situ (DCIS). PLoS One. 2010;5(8):e12100. doi: 10.1371/journal.pone.0012100.CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Witkiewicz AK, Freydin B, Chervoneva I, Potoczek M, Rizzo W, Rui H, et al. Stromal CD10 and SPARC expression in ductal carcinoma in situ (DCIS) patients predicts disease recurrence. Cancer Biol Ther. 2010;10(4):391–6.CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Pandey PR, Saidou J, Watabe K. Role of myoepithelial cells in breast tumor progression. Front Biosci. 2010;15:226–36.CrossRefGoogle Scholar
  37. 37.
    Gusterson BA, Monaghan P, Mahendran R, Ellis J, O’Hare MJ. Identification of myoepithelial cells in human and rat breasts by anti-common acute lymphoblastic leukemia antigen antibody A12. J Natl Cancer Inst. 1986;77:343–9.PubMedGoogle Scholar
  38. 38.
    Bissell MJ, Radisky D. Putting tumors in context. Nat Rev Cancer. 2001;1:46–54.CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.CrossRefPubMedGoogle Scholar
  40. 40.
    Braham H, Trimeche M, Ziadi S, Mestiri S, Mokni M, Amara K, et al. CD10 expression by fusiform stromal cells in nasopharyngeal carcinoma correlates with tumor progression. Virchows Arch. 2006;449:220–4.CrossRefPubMedGoogle Scholar
  41. 41.
    Kondepudi A, Johnson A. Cytokines increase neutral endopeptidase activity in lung fibroblasts. Am Respir Cell Mol Biol. 1993;8:43–9.CrossRefGoogle Scholar
  42. 42.
    Humeniuk V, Forrest APM, Hawkins RA, Prescott R. Elastosis and primary breast cancer. Cancer. 1983;52:1448–52.CrossRefPubMedGoogle Scholar
  43. 43.
    Rasmussen BB, Pederrsen BV, Thorpe SM, Rose C. Elastosis in relation to prognosis in primary breast carcinoma. Cancer Res. 1985;45:1428–30.PubMedGoogle Scholar
  44. 44.
    Allred DC. Issues and updates: evaluating estrogen receptor-alpha, progesterone receptor, and Her2 in breast cancer. Mod Pathol. 2010;23(suppl 2):S52–59.Google Scholar
  45. 45.
    Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. 2012;18(4):1004–14.Google Scholar
  46. 46.
    Desmedt C, Majjaj S, Kheddoumi N, Singhal SK., Haibe-Kains B, El Ouriaghli F, Characterization and clinical evaluation of CD10+ stroma cells in the breast cancer microenvironment. Clin Cancer Res. 2012;18(4).Google Scholar

Copyright information

© The Japanese Breast Cancer Society 2013

Authors and Affiliations

  • Thi-Ngoc Diem Vo
    • 1
  • Eiji Mekata
    • 1
    Email author
  • Tomoko Umeda
    • 1
  • Hajime Abe
    • 1
  • Yuki Kawai
    • 1
  • Tsuyoshi Mori
    • 1
  • Yoshihiro Kubota
    • 1
  • Hisanori Shiomi
    • 1
  • Shigeyuki Naka
    • 1
  • Tomoharu Shimizu
    • 1
  • Satoshi Murata
    • 1
  • Hiroshi Yamamoto
    • 1
  • Mitsuaki Ishida
    • 2
  • Tohru Tani
    • 1
  1. 1.Department of SurgeryShiga University of Medical ScienceOtsuJapan
  2. 2.Department of Clinical Laboratory Medicine and Division of Diagnostic PathologyShiga University of Medical Science HospitalOtsuJapan

Personalised recommendations