Advertisement

Breast Cancer

, Volume 20, Issue 4, pp 342–356 | Cite as

A clinically relevant bi-cellular murine mammary tumor model as a useful tool for evaluating the effect of retinoic acid signaling on tumor progression

  • Laura Beatriz Todaro
  • María José Veloso
  • Paola Bernadette Campodónico
  • Lydia Inés Puricelli
  • Eduardo Francisco Farías
  • Elisa Dora Bal de Kier Joffé
Original Article

Abstract

Background

The effect of retinoic acid (RA) on breast cancer progression is controversial. Our objective was to obtain information about breast cancer progression, taking advantage of the ER-negative murine mammary adenocarcinoma model LM38 (LM38-LP constituted by luminal (LEP) and myoepithelial-like cells (MEP), LM38-HP mainly composed of spindle-shaped epithelial cells, and LM38-D2 containing only large myoepithelial cells), and to validate the role of the retinoic acid receptors (RARs) in each cell-type compartment.

Materials and methods

We studied the expression and functionality of the RARs in LM38 cell lines. We analyzed cell growth and cell cycle distribution, apoptosis, the activity of proteases, motility properties, and expression of the molecules involved in these pathways. We also evaluated tumor growth and dissemination in vivo under retinoid treatment.

Results

LM38 cell lines expressed most retinoic receptor isotypes that were functional. However, only the bi-cellular LM38-LP cells responded to retinoids by increasing RARβ2 and CRBP1 expression. The growth of LM38 cell sublines was inhibited by retinoids, first by inducing arrest in MEP cells, then apoptosis in LEP cells. Retinoids induced inhibitory effects on motility, invasiveness, and activity of proteolytic enzymes, mainly in the LM38-LP cell line. In in-vivo assays with the LM38-LP cell line, RA treatment impaired both primary tumor growth and lung metastases dissemination.

Conclusion

These in-vivo and in-vitro results show that to achieve maximum effects of RA on tumor progression both the LEP and MEP cell compartments have to be present, suggesting that the interaction between the LEP and MEP cells is crucial to full activation of the RARs.

Keywords

Breast cancer Luminal and myoepithelial cells Retinoids Metastasis 

Notes

Acknowledgments

This work is dedicated to the memory of Dr Rafael Mira y Lopez. It was supported by grants from the Fogarty International Center, NIH (1 R03 TW007207-01), UBACyT (M003, M243 and U404), and FONCyT (PICT 00417 and PICT 01296. Préstamo BID). Confocal laser scanning microscopy was performed at the MSSM-Microscopy Shared Resource Facility, supported by funding from an NIH-NCI shared resources grant (5R24 CA095823-04), an NSF Major Research Instrumentation grant (DBI-9724504), and an NIH shared instrumentation grant (1 S10 RR0 9145-01).

References

  1. 1.
    Lakhani SR, O’Hare MJ. The mammary myoepithelial cell—Cinderella or ugly sister? Breast Cancer Res. 2001;3(1):1–4.PubMedCrossRefGoogle Scholar
  2. 2.
    Hu M, Yao J, Carroll DK, Weremowicz S, Chen H, Carrasco D, et al. Regulation of in situ to invasive breast carcinoma transition. Cancer Cell. 2008;13(5):394–406.PubMedCrossRefGoogle Scholar
  3. 3.
    Gordon LA, Mulligan KT, Maxwell-Jones H, Adams M, Walker RA, Jones JL. Breast cell invasive potential relates to the myoepithelial phenotype. Int J Cancer. 2003;106(1):8–16.PubMedCrossRefGoogle Scholar
  4. 4.
    Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.PubMedCrossRefGoogle Scholar
  5. 5.
    Bumaschny V, Urtreger A, Diament M, Krasnapolski M, Fiszman G, Klein S, et al. Malignant myoepithelial cells are associated with the differentiated papillary structure and metastatic ability of a syngeneic murine mammary adenocarcinoma model. Breast Cancer Res. 2004;6(2):R116–29.PubMedCrossRefGoogle Scholar
  6. 6.
    Sopel M. The myoepithelial cell: its role in normal mammary glands and breast cancer. Folia Morphol (Warsz). 2010;69(1):1–14.Google Scholar
  7. 7.
    Soprano DR, Qin, P., and Soprano, K.J. 24, 201–221. Retinoic acid receptors and cancers. Annu Rev Nutr. 2004;24:201–21.Google Scholar
  8. 8.
    Altucci L, Leibowitz MD, Ogilvie KM, de Lera AR, Gronemeyer H. RAR and RXR modulation in cancer and metabolic disease. Nat Rev Drug Discov. 2007;6(10):793–810.PubMedCrossRefGoogle Scholar
  9. 9.
    Bastien J, Rochette-Egly C. Nuclear retinoid receptors and the transcription of retinoid-target genes. Gene. 2004;328:1–16.PubMedCrossRefGoogle Scholar
  10. 10.
    Rochette-Egly C, Plassat JL, Taneja R, Chambon P. The AF-1 and AF-2 activating domains of retinoic acid receptor-alpha (RARalpha) and their phosphorylation are differentially involved in parietal endodermal differentiation of F9 cells and retinoid-induced expression of target genes. Mol Endocrinol (Baltimore, Md). 2000;14(9):1398–410.Google Scholar
  11. 11.
    Mark M, Ghyselinck NB, Chambon P. Function of retinoid nuclear receptors: lessons from genetic and pharmacological dissections of the retinoic acid signaling pathway during mouse embryogenesis. Annu Rev Pharmacol Toxicol Appl Pharmacol. 2006;46:451–80.CrossRefGoogle Scholar
  12. 12.
    Donato LJ, Suh JH, Noy N. Suppression of mammary carcinoma cell growth by retinoic acid: the cell cycle control gene Btg2 is a direct target for retinoic acid receptor signaling. Cancer Res. 2007;67:609–15.PubMedCrossRefGoogle Scholar
  13. 13.
    Altucci L, Rossin A, Raffelsberger W, Reitmair A, Chomienne C, Gronemeyer H. Retinoic acid-induced apoptosis in leukemia cells is mediated by paracrine action of tumor-selective death ligand TRAIL. Nat Med. 2001;7(6):680–6.PubMedCrossRefGoogle Scholar
  14. 14.
    Kadara H, Tahara E, Kim HJ, Lotan D, Myers J, Lotan R. Involvement of Rac in fenretinide-induced apoptosis. Cancer Res. 2008;68(11):4416–23.PubMedCrossRefGoogle Scholar
  15. 15.
    Altucci L, Gronemeyer H. The promise of retinoids to fight against cancer. Nat Rev Cancer. 2001;1(3):181–93.PubMedCrossRefGoogle Scholar
  16. 16.
    Kupumbati TS, Cattoretti G, Marzan C, Farias EF, Taneja R, Mira-y-Lopez R. Dominant negative retinoic acid receptor initiates tumor formation in mice. Mol Cancer. 2006;5:12.PubMedCrossRefGoogle Scholar
  17. 17.
    Mongan NP, Gudas LJ. Diverse actions of retinoid receptors in cancer prevention and treatment. Differentiation. 2007;75(9):853–70.PubMedCrossRefGoogle Scholar
  18. 18.
    Simeone AM, Tari AM. How retinoids regulate breast cancer cell proliferation and apoptosis. Cell Mol Life Sci. 2004;61(12):1475–84.PubMedCrossRefGoogle Scholar
  19. 19.
    Degos L, Wang ZY. All trans retinoic acid in acute promyelocytic leukemia. Oncogene. 2001;20(49):7140–5.PubMedCrossRefGoogle Scholar
  20. 20.
    Freemantle SJ, Guo Y, Dmitrovsky E. Retinoid chemoprevention trials: cyclin D1 in the crosshairs. Cancer Prev Res (Philadelphia, Pa). 2009;2(1):3–6.Google Scholar
  21. 21.
    Balmer JE, Blomhoff R. Gene expression regulation by retinoic acid. J Lipid Res. 2002;43(11):1773–808.PubMedCrossRefGoogle Scholar
  22. 22.
    Swisshelm K, Ryan K, Lee X, Tsou HC, Peacocke M, Sager R. Down-regulation of retinoic acid receptor beta in mammary carcinoma cell lines and its up-regulation in senescing normal mammary epithelial cells. Cell Growth Differ. 1994;5(2):133–41.PubMedGoogle Scholar
  23. 23.
    Arapshian A, Bertran S, Kuppumbatti YS, Nakajo S, Mira-y-Lopez R. Epigenetic CRBP downregulation appears to be an evolutionarily conserved (human and mouse) and oncogene-specific phenomenon in breast cancer. Mol Cancer. 2004;3:13.PubMedCrossRefGoogle Scholar
  24. 24.
    Zelent A. PCR cloning of N-terminal RAR isotypes and APL-associated PLZF-RAR alpha fusion proteins. Methods Mol Biol. 1998;89:307–32.PubMedGoogle Scholar
  25. 25.
    Urtreger AJ, Diament MJ, Ranuncolo SM, Del C, Vidal M, Puricelli LI, Klein SM, et al. New murine cell line derived from a spontaneous lung tumor induces paraneoplastic syndromes. Int J Oncol. 2001;18(3):639–47.PubMedGoogle Scholar
  26. 26.
    Urtreger AJ, Aguirre Ghiso JA, Werbajh SE, Puricelli LI, Muro AF, Bal de Kier Joff E. Involvement of fibronectin in the regulation of urokinase production and binding in murine mammary tumor cells. Int J Cancer. 1999;82(5):748–53.PubMedCrossRefGoogle Scholar
  27. 27.
    Aguirre Ghiso JA, Farias EF, Alonso DF, Bal de Kier Joffe E. Secretion of urokinase and metalloproteinase-9 induced by staurosporine is dependent on a tyrosine kinase pathway in mammary tumor cells. Int J Cancer. 1998;76(3):362–7.Google Scholar
  28. 28.
    Hoon D, Kitago M, Kim J, Mori T, Piris A, Szyfelbein K, et al. Molecular mechanisms of metastasis. Cancer Metastasis Rev. 2006;25(2):203–20.PubMedCrossRefGoogle Scholar
  29. 29.
    Steeg PS. Tumor metastasis: mechanistic insights and clinical challenges. Nat Med. 2006;12(8):895–904.Google Scholar
  30. 30.
    Niles RM. Signaling pathways in retinoid chemoprevention and treatment of cancer. Mutat Res. 2004;555(1–2):81–96.PubMedGoogle Scholar
  31. 31.
    Niles RM. Biomarker and animal models for assessment of retinoid efficacy in cancer chemoprevention. Acta Pharmacol Sin. 2007;28(9):1383–91.PubMedCrossRefGoogle Scholar
  32. 32.
    Qiu H, Zhang W, El-Naggar AK, Lippman SM, Lin P, Lotan R, et al. Loss of retinoic acid receptor-beta expression is an early event during esophageal carcinogenesis. Am J Pathol. 1999;155(5):1519–23.PubMedCrossRefGoogle Scholar
  33. 33.
    Faria TN, Mendelsohn C, Chambon P, Gudas LJ. The targeted disruption of both alleles of RARbeta(2) in F9 cells results in the loss of retinoic acid-associated growth arrest. J Biol Chem. 1999;274(38):26783–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Ariga N, Moriya T, Suzuki T, Kimura M, Ohuchi N, Sasano H. Retinoic acid receptor and retinoid X receptor in ductal carcinoma in situ and intraductal proliferative lesions of the human breast. Jpn J Cancer Res. 2000;91(11):1169–76.PubMedCrossRefGoogle Scholar
  35. 35.
    Lu M, Mira-y-Lopez R, Nakajo S, Nakaya K, Jing Y. Expression of estrogen receptor alpha, retinoic acid receptor alpha and cellular retinoic acid binding protein II genes is coordinately regulated in human breast cancer cells. Oncogene. 2005;24(27):4362–9.PubMedCrossRefGoogle Scholar
  36. 36.
    Fitzgerald P, Teng M, Chandraratna RA, Heyman RA, Allegretto EA. Retinoic acid receptor alpha expression correlates with retinoid-induced growth inhibition of human breast cancer cells regardless of estrogen receptor status. Cancer Res. 1997;57(13):2642–50.PubMedGoogle Scholar
  37. 37.
    Li R, Faria TN, Boehm M, Nabel EG, Gudas LJ. Retinoic acid causes cell growth arrest and an increase in p27 in F9 wild type but not in F9 retinoic acid receptor beta2 knockout cells. Exp Cell Res. 2004;294(1):290–300.PubMedCrossRefGoogle Scholar
  38. 38.
    Boorjian S, Scherr DS, Mongan NP, Zhuang Y, Nanus DM, Gudas LJ. Retinoid receptor mRNA expression profiles in human bladder cancer specimens. Int J Oncol. 2005;26(4):1041–8.PubMedGoogle Scholar
  39. 39.
    Farias EF, Ong DE, Ghyselinck NB, Nakajo S, Kuppumbatti YS, Mira y Lopez R. Cellular retinol-binding protein I, a regulator of breast epithelial retinoic acid receptor activity, cell differentiation, and tumorigenicity. J Natl Cancer Inst. 2005;97(1):21–9.PubMedCrossRefGoogle Scholar
  40. 40.
    Piantedosi R, Ghyselinck N, Blaner WS, Vogel S. Cellular retinol-binding protein type III is needed for retinoid incorporation into milk. J Biol Chem. 2005;280(25):24286–92.PubMedCrossRefGoogle Scholar
  41. 41.
    Yang Q, Shan L, Yoshimura G, Nakamura M, Nakamura Y, Suzuma T, et al. 5-aza-2′-deoxycytidine induces retinoic acid receptor beta 2 demethylation, cell cycle arrest and growth inhibition in breast carcinoma cells. Anticancer Res. 2002;22(5):2753–6.PubMedGoogle Scholar
  42. 42.
    Spinella MJ, Freemantle SJ, Sekula D, Chang JH, Christie AJ, Dmitrovsky E. Retinoic acid promotes ubiquitination and proteolysis of cyclin D1 during induced tumor cell differentiation. J Biol Chem. 1999;274(31):22013–8.PubMedCrossRefGoogle Scholar
  43. 43.
    Seewaldt VL, Kim JH, Caldwell LE, Johnson BS, Swisshelm K, Collins SJ. All-trans-retinoic acid mediates G1 arrest but not apoptosis of normal human mammary epithelial cells. Cell Growth Differ. 1997;8(6):631–41.PubMedGoogle Scholar
  44. 44.
    Yang L, Ostrowski J, Reczek P, Brown P. The retinoic acid receptor antagonist, BMS453, inhibits normal breast cell growth by inducing active TGFbeta and causing cell cycle arrest. Oncogene. 2001;20(55):8025–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Dimberg A, Bahram F, Karlberg I, Larsson LG, Nilsson K, Oberg F. Retinoic acid-induced cell cycle arrest of human myeloid cell lines is associated with sequential down-regulation of c-Myc and cyclin E and posttranscriptional up-regulation of p27(Kip1). Blood. 2002;99(6):2199–206.PubMedCrossRefGoogle Scholar
  46. 46.
    Guruvayoorappan C, Pradeep CR, Kuttan G. 13-cis-retinoic acid induces apoptosis by modulating caspase-3, bcl-2, and p53 gene expression and regulates the activation of transcription factors in B16F-10 melanoma cells. J Environ Pathol Toxicol Oncol. 2008;27(3):197–207.PubMedCrossRefGoogle Scholar
  47. 47.
    Luo P, Lin M, Lin M, Chen Y, Yang B, He Q. Function of retinoid acid receptor alpha and p21 in all-trans-retinoic acid-induced acute T-lymphoblastic leukemia apoptosis. Leuk Lymphoma. 2009;50(7):1183–9.PubMedCrossRefGoogle Scholar
  48. 48.
    Toma S, Isnardi L, Riccardi L, Bollag W. Induction of apoptosis in MCF-7 breast carcinoma cell line by RAR and RXR selective retinoids. Anticancer Res. 1998;18(2A):935–42.Google Scholar
  49. 49.
    Nakagawa S, Fujii T, Yokoyama G, Kazanietz MG, Yamana H, Shirouzu K. Cell growth inhibition by all-trans retinoic acid in SKBR-3 breast cancer cells: involvement of protein kinase Calpha and extracellular signal-regulated kinase mitogen-activated protein kinase. Mol Carcinog. 2003;38(3):106–16.PubMedCrossRefGoogle Scholar
  50. 50.
    Zanotto-Filho A, Cammarota M, Gelain DP, Oliveira RB, Delgado-Canedo A, Dalmolin RJ, et al. Retinoic acid induces apoptosis by a non-classical mechanism of ERK1/2 activation. Toxicol In Vitro. 2008;22(5):1205–12.PubMedCrossRefGoogle Scholar
  51. 51.
    Bohnsack BL, Lai L, Dolle P, Hirschi KK. Signaling hierarchy downstream of retinoic acid that independently regulates vascular remodeling and endothelial cell proliferation. Genes Dev. 2004;18(11):1345–58.PubMedCrossRefGoogle Scholar
  52. 52.
    Webber MM, Waghray A. Urokinase-mediated extracellular matrix degradation by human prostatic carcinoma cells and its inhibition by retinoic acid. Clin Cancer Res. 1995;1(7):755–61.PubMedGoogle Scholar
  53. 53.
    Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Nat Rev. 2002;2(3):161–74.CrossRefGoogle Scholar
  54. 54.
    Liu H, Zang C, Fenner MH, Possinger K, Elstner E. PPARgamma ligands and ATRA inhibit the invasion of human breast cancer cells in vitro. Breast Cancer Res Treat. 2003;79(1):63–74.PubMedCrossRefGoogle Scholar
  55. 55.
    Adachi Y, Itoh F, Yamamoto H, Iku S, Matsuno K, Arimura Y, et al. Retinoic acids reduce matrilysin (matrix metalloproteinase 7) and inhibit tumor cell invasion in human colon cancer. Tumour Biol. 2001;22(4):247–53.PubMedCrossRefGoogle Scholar
  56. 56.
    Mira-y-Lopez R, Reich E, Ossowski L. Modulation of plasminogen activator in rodent mammary tumors by hormones and other effectors. Cancer Res. 1983;43(11):5467–77.PubMedGoogle Scholar
  57. 57.
    Caliaro MJ, Marmouget C, Guichard S, Mazars P, Valette A, Moisand A, et al. Response of four human ovarian carcinoma cell lines to all-trans retinoic acid: relationship with induction of differentiation and retinoic acid receptor expression. Int J Cancer. 1994;56(5):743–8.PubMedCrossRefGoogle Scholar
  58. 58.
    Garcia-Alonso I, Palomares T, Alonso-Varona A, Castro B, Del Olmo M, Portugal V, et al. Effects of all-trans retinoic acid on tumor recurrence and metastasis. Rev Esp Enferm Dig. 2005;97(4):240–8.PubMedCrossRefGoogle Scholar
  59. 59.
    Choi Y, Kim SY, Kim SH, Yang J, Park K, Byun Y. Inhibition of tumor growth by biodegradable microspheres containing all-trans-retinoic acid in a human head-and-neck cancer xenograft. Int J Cancer. 2003;107(1):145–8.PubMedCrossRefGoogle Scholar
  60. 60.
    Wu Q, Chen YQ, Chen ZM, Chen F, Su WJ. Effects of retinoic acid on metastasis and its related proteins in gastric cancer cells in vivo and in vitro. Acta Pharmacol Sin. 2002;23(9):835–41.PubMedGoogle Scholar
  61. 61.
    Suzuki S, Kawakami S, Chansri N, Yamashita F, Hashida M. Inhibition of pulmonary metastasis in mice by all-trans retinoic acid incorporated in cationic liposomes. J Control Release. 2006;116(1):58–63.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2012

Authors and Affiliations

  • Laura Beatriz Todaro
    • 1
    • 3
  • María José Veloso
    • 1
  • Paola Bernadette Campodónico
    • 1
    • 3
  • Lydia Inés Puricelli
    • 1
    • 3
  • Eduardo Francisco Farías
    • 2
  • Elisa Dora Bal de Kier Joffé
    • 1
    • 3
  1. 1.Research Area, Institute of Oncology “Angel H. Roffo”University of Buenos AiresBuenos AiresArgentina
  2. 2.Division of Hematology-Oncology, Department of MedicineTisch Cancer Institute, Mount Sinai School of MedicineNew YorkUSA
  3. 3.Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)Buenos AiresArgentina

Personalised recommendations