Breast Cancer

, Volume 20, Issue 3, pp 213–217 | Cite as

Influence of the in situ component in 389 infiltrating ductal breast carcinomas

  • Pau Carabias-Meseguer
  • Ignacio ZapardielEmail author
  • Maite Cusidó-Gimferrer
  • Sonia Godoy-Tundidor
  • Francesc Tresserra-Casas
  • Ignacio Rodriguez-García
  • Rafael Fábregas-Xauradó
  • Jordi Xercavins-Montosa
Original Article



Our aim was to evaluate and compare lymph node involvement, as well as disease-free survival (DFS) and overall survival (OS), between infiltrating ductal carcinoma with (group 1) and without (group 2) intraductal carcinoma component in order to determine the prognostic value of the intraductal component.


Data from 389 cases of infiltrating ductal carcinoma of the breast were included in the study by means of reviewing medical charts and pathology slides.


There was no statistically significant difference between both groups regarding node status. The 5-year DFS rate was 90.7% in group 1 and 81.8% in group 2 (p = 0.014), with a median follow-up of 73.2 months (95% CI 68.3–77.4). There was no statistically significant difference in 5-year OS between groups (98% group 1 vs. 93% group 2) with a median global survival of 134 months (95% CI 131–137).


The presence of intraductal component in the infiltrating carcinoma seems to increase DFS and may be an independent and favorable prognostic factor for breast cancer.


Infiltrating ductal carcinoma Intraductal carcinoma Lymph node involvement 


  1. 1.
    Dupont WD, Page DL. Risk factors for breast cancer in women with proliferative breast disease. N Eng J Med. 1985;312:146–51.CrossRefGoogle Scholar
  2. 2.
    Dupont WD, Anderson TJ, Rogers LW. Epithelial hyperplasia. In: Diagnostic histopathology of the breast. Edinburgh: Churchill Livingstone; 1987. p. 120–56.Google Scholar
  3. 3.
    Tresserra F, Grasses PJ, Garrido M. Lesiones hiperplásicas y preinvasivas precursoras del cáncer de mama: desde la epiteliosis hasta la neoplasia ductal intraepitelial. Rev Senología Patol Mam. 2006;19:162–4.Google Scholar
  4. 4.
    Connolly JL, Boyages J, Schnitt SJ, Recht A, Silen W, Sadowsky N, et al. In situ carcinoma of the breast. Annu Rev Med. 1989;40:173–80.CrossRefPubMedGoogle Scholar
  5. 5.
    Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, Sertel O, Gurcan MN. Computerized classification of intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng. 2011;58(7):1977–84.CrossRefPubMedGoogle Scholar
  6. 6.
    Allred DC. Ductal carcinoma in situ: terminology, classification, and natural history. J Natl Cancer Inst Monogr. 2010;2010(41):134–8.CrossRefPubMedGoogle Scholar
  7. 7.
    Buerger H, Mommers EC, Littman R, Simon R, Diallo R, Poremba C, et al. Ductal invasive G2 and G3 carcinomas of the breast are the end stages of at least 2 different lines of genetic evolution. J Pathol. 2001;194:165–70.CrossRefPubMedGoogle Scholar
  8. 8.
    Hwang ES, DeVries S, Chew KL, Moore DH 2nd, Kerlikowske K, Thor A, et al. Patterns of chromosomal alterations in breast ductal carcinoma in situ. Clin Cancer Res. 2004;10:5160–7.CrossRefPubMedGoogle Scholar
  9. 9.
    Irvine T, Fentiman IS. Biology and a treatment of ductal carcinoma in situ. Expert Rev Anticancer Ther. 2007;7:135–45.CrossRefPubMedGoogle Scholar
  10. 10.
    Wiechmann L, Kuerer HM. The molecular journey from ductal carcinoma in situ to invasive breast cancer. Cancer. 2008;112(10):2130–42.CrossRefPubMedGoogle Scholar
  11. 11.
    Porter D, Lahti-Domenici J, Keshaviah A, Bae YK, Argani P, Marks J, et al. Molecular markers in ductal carcinoma in situ of the breast. Mol Cancer Res. 2003;5:320–8.Google Scholar
  12. 12.
    Elston CW, Ellis IO. Pathological prognostic factors in breast cancer, I: the value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.CrossRefPubMedGoogle Scholar
  13. 13.
    Silverstein MJ, Poller DN, Waisman JR, Colburn WJ, Barth A, Gierson ED, et al. Prognostic classification of breast ductal carcinoma in situ. Lancet. 1995;345:1154–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Tresserra F, Martínez MA. Factores pronósticos en el cáncer de mama: parte I. Factores morfológicos. Rev Senología Patol Mam. 2008;21:170–4.Google Scholar
  15. 15.
    O’Connell P, Pekkel V, Fuqua SA, Osborne CK, Clark GM, Allred DC. Analysis of loss of heterozygosity in 399 premalignant breast lesions at 15 genetic loci. J Natl Cancer Inst. 1998;90:697–703.CrossRefPubMedGoogle Scholar
  16. 16.
    Chuaqui RF, Zhuang Z, Emmert-Buck MR, Liotta LA, Merino MJ. Analysis of loss of heterozygosity on chromosome 11q13 in atypical ductal hyperplasia and in situ carcinoma of the breast. Am J Pathol. 1997;150(1):297–303.PubMedGoogle Scholar
  17. 17.
    O’Malley FP, Pinder SE. Breast pathology. 1st ed. Philadelphia: Churchill Livingstone; 2006.Google Scholar
  18. 18.
    Malafa M, Chaudhuri B, Thomford NR, Chadhuri PK. Estrogen receptors in ductal carcinoma in situ of the breast. Am Surg. 1990;56:436–9.PubMedGoogle Scholar
  19. 19.
    Barnes R, Masood S. Potential value of hormone receptor assay in carcinoma in situ of breast. Am J Clin Pathol. 1990;94:533–7.PubMedGoogle Scholar
  20. 20.
    Chaudhuri B, Crist KA, Mucci S, Malafa M, Chaudhuri PK. Distribution of estrogen receptor in ductal carcinoma in situ of the breast. Surgery. 1993;113(2):134–7.PubMedGoogle Scholar
  21. 21.
    Poller DN, Galea M, Pearson D, Bell J, Gullick WJ, Elston CW, et al. Nuclear and flow cytometric characteristics associated with overexpression of the c-erbB-2 oncoprotein in breast carcinoma. Breast Cancer Res Treat. 1991;20:3–10.CrossRefPubMedGoogle Scholar
  22. 22.
    Visscher DW, Sarkar FH, Crissman JD. Correlation of DNA ploidy with c-erbB-2 expression in preinvasive and invasive breast tumors. Anal Quant Cytol Histol. 1991;13:418–24.PubMedGoogle Scholar
  23. 23.
    Lodato RF, Maguire HC Jr, Greene MI, Weiner DB, LiVolsi VA. Immunohistochemical evaluation of c-erbB-2 oncogene expression in ductal carcinoma in situ and atypical ductal hyperplasia of the breast. Mod Pathol. 1990;3:449–54.PubMedGoogle Scholar
  24. 24.
    Allred DC, Mohsin SK. Biological features of premalignant disease in the human breast. J Mammary Gland Biol Neoplasia. 2000;5:351–64.CrossRefPubMedGoogle Scholar
  25. 25.
    Allred DC, Clark GM, Elledge R, Fuqua SA, Brown RW, Chamness GC, et al. Association of p53 protein expression with tumor cell proliferation rate and clinical outcome in node-negative breast cancer. J Natl Cancer Inst. 1993;85:200–6.CrossRefPubMedGoogle Scholar
  26. 26.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Hu M, Yao J, Cai L, Bachman KE, van den Brule F, Velculescu V, et al. Distinct epigenetic changes in the stromal cells of breast cancers. Nat Genet. 2005;37:899–905.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2012

Authors and Affiliations

  • Pau Carabias-Meseguer
    • 1
  • Ignacio Zapardiel
    • 2
    Email author
  • Maite Cusidó-Gimferrer
    • 1
  • Sonia Godoy-Tundidor
    • 2
  • Francesc Tresserra-Casas
    • 1
  • Ignacio Rodriguez-García
    • 1
  • Rafael Fábregas-Xauradó
    • 1
  • Jordi Xercavins-Montosa
    • 3
  1. 1.Department of Obstetrics, Gynecology and ReproductionDexeus University InstituteBarcelonaSpain
  2. 2.Department of GynecologyLa Paz University HospitalMadridSpain
  3. 3.Department of GynecologyValle d’Hebron HospitalBarcelonaSpain

Personalised recommendations