Breast Cancer

, Volume 18, Issue 1, pp 64–67 | Cite as

Refractory lung metastasis from breast cancer treated with multidisciplinary therapy including an immunological approach

  • Masahiro Takada
  • Hiroshi Terunuma
  • Xuewen Deng
  • Md. Zahidunnabi Dewan
  • Shigehira Saji
  • Katsumasa Kuroi
  • Naoki Yamamoto
  • Masakazu ToiEmail author
Case Report


A suggestive case of metastatic disease from breast cancer is reported. The HER-2-positive tumor was refractory to several agents, including anti-HER-2 therapy, trastuzumab, and lapatinib. After re-induction of trastuzumab in combination with activated natural killer (NK) cell injection therapy, tumor markers decreased, and finally a synergistic effect of taxane and capecitabine led to treatment response. This case suggests that multidisciplinary therapy including an immunological approach might be a breakthrough in the treatment of refractory disease.


Breast cancer Metastasis Natural killer cell Chemotherapy Trastuzumab 



We obtained consent for publication in print and electronically from the patient’s husband.


  1. 1.
    Thor AD, Liu S, Edgerton S, Moore D 2nd, Kasowitz KM, Benz CC, et al. Activation (tyrosine phosphorylation) of ErbB-2 (HER-2/neu): a study of incidence and correlation with outcome in breast cancer. J Clin Oncol. 2000;18:3230–9.PubMedGoogle Scholar
  2. 2.
    Slamon DJ, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med. 2001;344:783–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Piccart-Gebhart MJ, Procter M, Leyland-Jones B, Goldhirsch A, Untch M, Smith I, et al. Trastuzumab after adjuvant chemotherapy in HER2-positive breast cancer. N Engl J Med. 2005;353:1659–72.CrossRefPubMedGoogle Scholar
  4. 4.
    Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med. 2005;353:1673–84.CrossRefPubMedGoogle Scholar
  5. 5.
    Clynes RA, Towers TL, Presta LG, Ravetch JV. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.CrossRefPubMedGoogle Scholar
  6. 6.
    Gennari R, Menard S, Fagnoni F, Ponchio L, Scelsi M, Tagliabue E, et al. Pilot study of the mechanism of action of preoperative trastuzumab in patients with primary operable breast tumors overexpressing HER2. Clin Cancer Res. 2004;10:5650–5.CrossRefPubMedGoogle Scholar
  7. 7.
    Suzuki E, Niwa R, Saji S, Muta M, Hirose M, Iida S, et al. A nonfucosylated anti-HER2 antibody augments antibody-dependent cellular cytotoxicity in breast cancer patients. Clin Cancer Res. 2007;13:1875–82.CrossRefPubMedGoogle Scholar
  8. 8.
    Leibson PJ. Signal transduction during natural killer cell activation: inside the mind of a killer. Immunity. 1997;6:655–61.CrossRefPubMedGoogle Scholar
  9. 9.
    Terunuma H, Deng X, Dewan Z, Fujimoto S, Yamamoto N. Potential role of NK cells in the induction of immune responses: implications for NK cell-based immunotherapy for cancers and viral infections. Int Rev Immunol. 2008;27:93–110.CrossRefPubMedGoogle Scholar
  10. 10.
    Dewan MZ, Terunuma H, Takada M, Tanaka Y, Abe H, Sata T, et al. Role of natural killer cells in hormone-independent rapid tumor formation and spontaneous metastasis of breast cancer cells in vivo. Breast Cancer Res Treat. 2007;104:267–75.CrossRefPubMedGoogle Scholar
  11. 11.
    Hayashi T, Imai K, Morishita Y, Hayashi I, Kusunoki Y, Nakachi K. Identification of the NKG2D haplotypes associated with natural cytotoxic activity of peripheral blood lymphocytes and cancer immunosurveillance. Cancer Res. 2006;66:563–70.CrossRefPubMedGoogle Scholar
  12. 12.
    Dewan MZ, Takada M, Terunuma H, Deng X, Ahmed S, Yamamoto N, et al. Natural killer activity of peripheral-blood mononuclear cells in breast cancer patients. Biomed Pharmacother. 2009;63:703–6.CrossRefPubMedGoogle Scholar
  13. 13.
    Koehl U, Sörensen J, Esser R, Zimmermann S, Grüttner HP, Tonn T, et al. IL-2 activated NK cell immunotherapy of three children after haploidentical stem cell transplantation. Blood Cells Mol Dis. 2004;33:261–6.CrossRefPubMedGoogle Scholar
  14. 14.
    Miwa M, Ura M, Nishida M, Sawada N, Ishikawa T, Mori K, et al. Design of a novel oral fluoropyrimidine carbamate, capecitabine, which generates 5-fluorouracil selectively in tumours by enzymes concentrated in human liver and cancer tissue. Eur J Cancer. 1998;34:1274–81.CrossRefPubMedGoogle Scholar
  15. 15.
    Toi M, Bando H, Horiguchi S, Takada M, Kataoka A, Ueno T, et al. Modulation of thymidine phosphorylase by neoadjuvant chemotherapy in primary breast cancer. Br J Cancer. 2004;90:2338–43.PubMedGoogle Scholar
  16. 16.
    Sawada N, Ishikawa T, Fukuse Y, Nishida M, Yoshikubo T, Ishitsuka H. Induction of thymidine phosphorylase activity and enhancement of capecitabine efficacy by taxol/taxotere in human cancer xenografts. Clin Cancer Res. 1998;4:1013–9.PubMedGoogle Scholar
  17. 17.
    Toi M, Rahman MA, Bando H, Chow LWC. Thymidine phosphorylase (platelet-derived endothelial-cell growth factor) in cancer biology and treatment. Lancet Oncol. 2005;6:128–66.CrossRefGoogle Scholar
  18. 18.
    Kubo M, Morisaki T, Matsumoto K, Tasaki A, Yamanaka N, Nakashima H, et al. Paclitaxel probably enhances cytotoxicity of natural killer cells against breast carcinoma cells by increasing perforin production. Cancer Immunol Immunother. 2005;54:468–76.CrossRefPubMedGoogle Scholar
  19. 19.
    Carson WE 3rd, Shapiro CL, Crespin TR, Thornton LM, Andersen BL. Cellular immunity in breast cancer patients completing taxane treatment. Clin Cancer Res. 2004;10:3401–9.CrossRefPubMedGoogle Scholar
  20. 20.
    Terunuma H, Wada A, Deng X, Yasuma Y, Onishi T, Toki A, et al. Mild hyperthermia modulates the relative frequency of lymphocyte cell subpopulations: an increase in a cytolytic NK cell subset and a decrease in a regulatory T cell subset. Therm Med. 2007;23:41–7.CrossRefGoogle Scholar
  21. 21.
    Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, et al. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6:117–27.CrossRefPubMedGoogle Scholar
  22. 22.
    Berns K, Horlings HM, Hennessy BT, Madiredjo M, Hijmans EM, Beelen K, et al. A functional genetic approach identifies the PI3K pathway as a major determinant of trastuzumab resistance in breast cancer. Cancer Cell. 2007;12:395–402.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2010

Authors and Affiliations

  • Masahiro Takada
    • 1
  • Hiroshi Terunuma
    • 2
    • 3
  • Xuewen Deng
    • 2
  • Md. Zahidunnabi Dewan
    • 4
  • Shigehira Saji
    • 5
  • Katsumasa Kuroi
    • 5
  • Naoki Yamamoto
    • 6
    • 7
  • Masakazu Toi
    • 1
    Email author
  1. 1.Department of Breast Surgery, Graduate School of MedicineKyoto UniversityKyotoJapan
  2. 2.Biotherapy Institute of JapanTokyoJapan
  3. 3.Tokyo Clinic Marunouchi OazoTokyoJapan
  4. 4.Department of PathologyNew York University Medical CenterNew YorkUSA
  5. 5.Department of SurgeryTokyo Metropolitan Cancer and Infectious Diseases Center, Komagome HospitalTokyoJapan
  6. 6.Department of Molecular VirologyTokyo Medical and Dental UniversityTokyoJapan
  7. 7.National Institute of Infectious DiseasesTokyoJapan

Personalised recommendations