Breast Cancer

, Volume 17, Issue 2, pp 86–91 | Cite as

Prediction of hormone sensitivity for breast cancers

  • Yasuo Miyoshi
  • Keiko Murase
  • Masaru Saito
  • Koushi Oh
Special Feature Breast cancer research from bench to bedside

Abstract

The classic action that leads to transcriptional activation of estrogen response genes mediated through estrogen receptors (ER) and the estrogen complex plays a pivotal role in the development of ER-positive breast cancers. In addition to this pathway, non-classic action and non-genomic action, both estrogen-dependent and estrogen-independent genomic actions have also been found to contribute to ER-positive tumor growth. Although the details of these mechanisms are not well known, participation of the growth factor signaling pathway is likely to be the most significant factor for acquisition of resistance to hormonal therapy. This resistance is mediated not only directly through cell growth promotion by growth factor signaling, but also through enhancement of alternative ER signaling pathways in addition to classic action. The reason why tamoxifen-insensitive ER-positive breast cancers respond to aromatase inhibitors may be explained, at least in part, by the different estrogen-related signaling pathways in which aromatase inhibitors may block estrogen signaling. In this paper we discuss the molecular mechanisms for resistance to hormonal therapy based on an understanding of estrogen signaling pathways.

Keywords

Breast cancer Signaling pathway Hormonal therapy Growth factor 

References

  1. 1.
    Ellis M. Overcoming endocrine therapy resistance by signal transduction inhibition. Oncologist. 2004;9(suppl 3):20–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Osborne CK, Schiff R. Estrogen-receptor biology: continuing progress and therapeutic implications. J Clin Oncol. 2005;23:1616–22.CrossRefPubMedGoogle Scholar
  3. 3.
    Bedard PL, Freedman OC, Howell A, Clemons M. Overcoming endocrine resistance in breast cancer: are signal transduction inhibitors the answer? Breast Cancer Res Treat. 2008;108:307–17.CrossRefPubMedGoogle Scholar
  4. 4.
    Sisci D, Surmacz E. Crosstalk between IGF signaling and steroid hormone receptors in breast cancer. Curr Pharm Des. 2007;13:705–17.CrossRefPubMedGoogle Scholar
  5. 5.
    Hayashi S, Yamaguchi Y. Estrogen signaling pathway and hormonal therapy. Breast Cancer. 2008;15:256–61.CrossRefPubMedGoogle Scholar
  6. 6.
    Weigel NL, Zhang Y. Ligand-independent activation of steroid hormone receptors. J Mol Med. 1998;76:469–79.CrossRefPubMedGoogle Scholar
  7. 7.
    Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, et al. Mechanisms of tamoxifen resistance: increased estrogen receptor-HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst. 2004;96:926–35.PubMedGoogle Scholar
  8. 8.
    Santen RJ, Song RX, Zhang Z, Yue W, Kumar R. Adaptive hypersensitivity to estrogen: mechanism for sequential responses to hormonal therapy in breast cancer. Clin Cancer Res. 2004;10:337S–45S.CrossRefPubMedGoogle Scholar
  9. 9.
    Berstein LM, Wang JP, Zheng H, Yue W, Conaway M, Santen RJ. Long-term exposure to tamoxifen induces hypersensitivity to estradiol. Clin Cancer Res. 2004;10:1530–4.CrossRefPubMedGoogle Scholar
  10. 10.
    Gutierrez MC, Detre S, Johnston S, Mohsin SK, Shou J, Allred DC, et al. Molecular changes in tamoxifen-resistant breast cancer: relationship between estrogen receptor, HER-2, and p38 mitogen-activated protein kinase. J Clin Oncol. 2005;23:2469–76.CrossRefPubMedGoogle Scholar
  11. 11.
    Chung YL, Sheu ML, Yang SC, Lin CH, Yen SH. Resistance to tamoxifen-induced apoptosis is associated with direct interaction between Her2/neu and cell membrane estrogen receptor in breast cancer. Int J Cancer. 2002;97:306–12.CrossRefPubMedGoogle Scholar
  12. 12.
    Osborne CK, Bardou V, Hopp TA, Chamness GC, Hilsenbeck SG, Fuqua SA, et al. Role of the estrogen receptor coactivator AIB1 (SRC-3) and HER-2/neu in tamoxifen resistance in breast cancer. J Natl Cancer Inst. 2003;95:353–61.PubMedGoogle Scholar
  13. 13.
    Cui X, Zhang P, Deng W, Oesterreich S, Lu Y, Mills GB, et al. Insulin-like growth factor-I inhibits progesterone receptor expression in breast cancer cells via the phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin pathway: progesterone receptor as a potential indicator of growth factor activity in breast cancer. Mol Endocrinol. 2003;17:575–88.CrossRefPubMedGoogle Scholar
  14. 14.
    Arpino G, Weiss H, Lee AV, Schiff R, De Placido S, Osborne CK, et al. Estrogen receptor-positive, progesterone receptor-negative breast cancer: association with growth factor receptor expression and tamoxifen resistance. J Natl Cancer Inst. 2005;97:1254–61.PubMedGoogle Scholar
  15. 15.
    Kappes H, Goemann C, Bamberger AM, Löning T, Milde-Langosch K. PTEN expression in breast and endometrial cancer: correlations with steroid hormone receptor status. Pathobiology. 2001;69:136–42.CrossRefPubMedGoogle Scholar
  16. 16.
    Stoica A, Saceda M, Fakhro A, Joyner M, Martin MB. Role of insulin-like growth factor-I in regulating estrogen receptor-alpha gene expression. J Cell Biochem. 2000;76:605–14.CrossRefPubMedGoogle Scholar
  17. 17.
    Stoica A, Saceda M, Doraiswamy VL, Coleman C, Martin MB. Regulation of estrogen receptor-alpha gene expression by epidermal growth factor. J Endocrinol. 2000;165:371–8.CrossRefPubMedGoogle Scholar
  18. 18.
    Pink JJ, Bilimoria MM, Assikis J, Jordan VC. Irreversible loss of the oestrogen receptor in T47D breast cancer cells following prolonged oestrogen deprivation. Br J Cancer. 1996;74:1227–36.PubMedGoogle Scholar
  19. 19.
    Dowsett M, Johnston S, Martin LA, Salter J, Hills M, Detre S, et al. Growth factor signalling and response to endocrine therapy: the Royal Marsden experience. Endocr Relat Cancer. 2005;12(suppl 1):S113–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Knoop AS, Bentzen SM, Nielsen MM, Rasmussen BB, Rose C. Value of epidermal growth factor receptor, HER2, p53, and steroid receptors in predicting the efficacy of tamoxifen in high-risk postmenopausal breast cancer patients. J Clin Oncol. 2001;19:3376–84.PubMedGoogle Scholar
  21. 21.
    Dowsett M, Allred C, Knox J, Quinn E, Salter J, Wale C, et al. Relationship between quantitative estrogen and progesterone receptor expression and human epidermal growth factor receptor 2 (HER-2) status with recurrence in the Arimidex, Tamoxifen, Alone or in Combination trial. J Clin Oncol. 2008;26:1059–65.CrossRefPubMedGoogle Scholar
  22. 22.
    Viale G, Regan MM, Maiorano E, Mastropasqua MG, Dell’Orto P, Rasmussen BB, et al. Prognostic and predictive value of centrally reviewed expression of estrogen and progesterone receptors in a randomized trial comparing letrozole and tamoxifen adjuvant therapy for postmenopausal early breast cancer: BIG 1–98. J Clin Oncol. 2007;25:3846–52.CrossRefPubMedGoogle Scholar
  23. 23.
    Dowsett M, Smith IE, Ebbs SR, Dixon JM, Skene A, A’Hern R, et al. Prognostic value of Ki67 expression after short-term presurgical endocrine therapy for primary breast cancer. J Natl Cancer Inst. 2007;99:167–70.CrossRefPubMedGoogle Scholar
  24. 24.
    Viale G, Giobbie-Hurder A, Regan MM, Coates AS, Mastropasqua MG, Dell’Orto P, et al. Prognostic and predictive value of centrally reviewed Ki-67 labeling index in postmenopausal women with endocrine-responsive breast cancer: results from Breast International Group Trial 1–98 comparing adjuvant tamoxifen with letrozole. J Clin Oncol. 2008;26:5569–75.CrossRefPubMedGoogle Scholar
  25. 25.
    Paik S, Shak S, Tang G, Kim C, Baker J, Cronin M, et al. A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. N Engl J Med. 2004;351:2817–26.CrossRefPubMedGoogle Scholar
  26. 26.
    van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AA, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002;347:1999–2009.CrossRefPubMedGoogle Scholar
  27. 27.
    Jansen MP, Foekens JA, van Staveren IL, Dirkzwager-Kiel MM, Ritstier K, Look MP, et al. Molecular classification of tamoxifen-resistant breast carcinomas by gene expression profiling. J Clin Oncol. 2005;23:732–40.CrossRefPubMedGoogle Scholar
  28. 28.
    Jansen MP, Sieuwerts AM, Look MP, Ritstier K, Meijer-van Gelder ME, van Staveren IL, et al. HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study. J Clin Oncol. 2007;25:662–8.Google Scholar
  29. 29.
    Kok M, Linn SC, Van Laar RK, Jansen MP, van den Berg TM, Delahaye LJ, et al. Comparison of gene expression profiles predicting progression in breast cancer patients treated with tamoxifen. Breast Cancer Res Treat. 2009;113:275–83.CrossRefPubMedGoogle Scholar
  30. 30.
    Jin Y, Desta Z, Stearns V, Ward B, Ho H, Lee KH, et al. CYP2D6 genotype, antidepressant use, and tamoxifen metabolism during adjuvant breast cancer treatment. J Natl Cancer Inst. 2005;97:30–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Ma CX, Adjei AA, Salavaggione OE, Coronel J, Pelleymounter L, Wang L, et al. Human aromatase: gene resequencing and functional genomics. Cancer Res. 2005;65:11071–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Colomer R, Monzo M, Tusquets I, Rifa J, Baena JM, Barnadas A, et al. A single-nucleotide polymorphism in the aromatase gene is associated with the efficacy of the aromatase inhibitor letrozole in advanced breast carcinoma. Clin Cancer Res. 2008;14:811–6.CrossRefPubMedGoogle Scholar
  33. 33.
    Cuzick J, Sestak I, Cella D, Fallowfield L, ATAC Trialists’ Group. Treatment-emergent endocrine symptoms and the risk of breast cancer recurrence: a retrospective analysis of the ATAC trial. Lancet Oncol. 2008;9:1143–8.CrossRefPubMedGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2009

Authors and Affiliations

  • Yasuo Miyoshi
    • 1
  • Keiko Murase
    • 1
  • Masaru Saito
    • 1
  • Koushi Oh
    • 1
  1. 1.Division of Breast and Endocrine Surgery, Department of SurgeryHyogo College of MedicineNishinomiyaJapan

Personalised recommendations