Breast Cancer

, 16:186 | Cite as

Gene and chromosomal alterations in sporadic breast cancer: correlation with histopathological features and implications for genesis and progression

Special Feature Current issues and perspectives on breast cancer diagnosis


A number of gene and chromosome alterations have been identified in sporadic breast carcinomas, and their clinical implications have been investigated. Changes in proto-oncogenes and tumor-suppressor genes, e.g., HER2, p53, and E-cadherin, and various numerical and structural chromosome alterations are strongly correlated with histological type and grade in breast carcinomas. The amount of information on these alterations has been dramatically increased by the introduction of high-throughput molecular cytogenetic approaches. In the near future, breast cancers will be classified into specific groups according to their profile of gene and chromosome alterations, allowing more effective personalized therapies targeting the associated molecular pathways.


der(1;16)/der(16)t(1;16) HER2 Intrinsic subtype Loss of heterozygosity p53 



This work was supported in part by a grant-in-aid for cancer research from the Ministry of Health, Labor, and Welfare, Japan, and a research grant from the Princess Takamatsu Cancer Research Fund. The authors indicate no conflict of interest in this study.


  1. 1.
    Cancer Statistics in Japan Editorial Board. Cancer statistics in Japan, Tokyo, 2007.
  2. 2.
    Fukutomi T, Ushijima T, Inoue R, Akashi-Tanaka S, Nanasawa T, Tsuda H. BRCA1 and BRCA2 germline mutations in Japanese with hereditary breast cancer families. Breast Cancer. 1997;4:256–8.PubMedCrossRefGoogle Scholar
  3. 3.
    Miki Y, Swensen J, Shattuck-Eidens D, Futreal PA, Harshman K, Tavtigian S, et al. A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science. 1994;266:66–71.PubMedCrossRefGoogle Scholar
  4. 4.
    Tavtigian SV, Simard J, Rommens J, Couch F, Shattuck-Eidens D, Neuhausen S, et al. The complete BRCA2 gene and mutations in chromosome 13q-linked kindreds. Nat Genet. 1996;12:333–7.PubMedCrossRefGoogle Scholar
  5. 5.
    Katagiri T, Kasumi F, Yoshimoto M, Nomizu T, Asaishi K, Abe R, et al. High proportion of missense mutations of the BRCA1 and BRCA2 genes in Japanese breast cancer families. J Hum Genet. 1998;43:42–8.PubMedCrossRefGoogle Scholar
  6. 6.
    Lakhani SR, Easton DF, Stratton MR. Breast Cancer Linkage Consortium. Pathology of familial breast cancer: differences between breast cancers in carriers of BRCA1 or BRCA2 mutations and sporadic cases. Lancet. 1997;349:1505–10.CrossRefGoogle Scholar
  7. 7.
    Noguchi S, Kasugai T, Miki Y, Fukutomi T, Emi M, Nomizu T. Clinicopathologic analysis of BRCA1- or BRCA2-associated hereditary breast carcinoma in Japanese women. Cancer. 1999;85:2200–5.PubMedCrossRefGoogle Scholar
  8. 8.
    Brugarolas J, Jacks T. Double indemnity: p53, BRCA and cancer. p53 mutation partially rescues developmental arrest in Brca1 and Brca2 null mice, suggesting a role for familial breast cancer genes in DNA damage repair. Nat Med. 1997;3:721–2.PubMedCrossRefGoogle Scholar
  9. 9.
    Ohta T, Fukuda M. Ubiquitin and breast cancer. Oncogene. 2004;23:2079–88.PubMedCrossRefGoogle Scholar
  10. 10.
    Narod SA, Foulkes WD. BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer. 2004;4:665–76.PubMedCrossRefGoogle Scholar
  11. 11.
    Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al. Molecular portlaits of human breast tumors. Nature. 2000;406:747–52.PubMedCrossRefGoogle Scholar
  12. 12.
    Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.PubMedCrossRefGoogle Scholar
  13. 13.
    Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.PubMedCrossRefGoogle Scholar
  14. 14.
    Desmedt C, Haibe-Kains B, Wirapati P, Buyse M, Larsimont D, Bontempi G, et al. Biological processes associated with breast cancer clinical outcome depend on the molecular subtypes. Clin Cancer Res. 2008;14:5158–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Fadare O, Tavassoli FA. Clinical and pathologic aspects of basal-like breast cancers. Nat Clin Pract Oncol. 2008;5:149–59.PubMedCrossRefGoogle Scholar
  16. 16.
    Rakha EA, Reis-Filho JS, Ellis IO. Basal-like breast cancer: a critical review. J Clin Oncol. 2008;26:2568–81.PubMedCrossRefGoogle Scholar
  17. 17.
    Goldhirsch A, Wood W, Gelber R, Coates A, Thurlimann B, Senn HJ. Progress and promise: highlights of the international expert consensus on the primary therapy of early breast cancer 2007. Ann Oncol. 2007;18:1133–44.PubMedCrossRefGoogle Scholar
  18. 18.
    National Comprehensive Cancer Network. NCCN Clinical Practice Guidelines in Oncology. Breast Cancer. v.1. 2009, p. 1–121. 2009.
  19. 19.
    Slamon DJ, Clark GM, Wong SG, Levin WJ, Ullrich A, McGuire WL. Human breast cancer: correlation of relapse and survival with amplification of the HER-2/neu oncogene. Science. 1987;235:177–82.PubMedCrossRefGoogle Scholar
  20. 20.
    van de Vijver M, van de Bersselaar R, Devilee P, Cornelisse C, Peterse J, Nusse R. Amplification of the neu (c-erbB-2) oncogene in human mammary tumors is relatively frequent and is often accompanied by amplification of the linked c-erbA oncogene. Mol Cell Biol. 1987;7:3019–23.Google Scholar
  21. 21.
    Berger MS, Locher GW, Sauer S, Gulluck WJ, Waterfield MD, Groner B, et al. Correlation of c-erbB-2 gene amplification and protein overexpression in human breast cancer with nodal status and nuclear grading. Cancer Res. 1988;48:1238–43.PubMedGoogle Scholar
  22. 22.
    Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Yamamoto H, et al. Correlation between long-term survival in breast cancer patients and amplification of two putative oncogene-coamplification units: hst-1/int-2 and c-erbB-2/ear-1. Cancer Res. 1989;49:3104–8.PubMedGoogle Scholar
  23. 23.
    Kallioniemi O-P, Kallioniemi A, Kurisu W, Thor A, Chen LC, Smith HS, et al. ERBB2 amplification in breast cancer analyzed by fluorescence in situ hybridization. Proc Natl Acad Sci USA. 1992;89:5321–5.PubMedCrossRefGoogle Scholar
  24. 24.
    Mitchell MS, Press MF. The role of immunohistochemistry and fluorescence in situ hybridization for HER2/neu in assessing the prognosis of breast cancer. Semin Oncol. 1999;26:108–16.PubMedGoogle Scholar
  25. 25.
    Tsuda H, Hirohashi S, Shimosato Y, Hirota T, Tsugane S, Watanabe S, et al. Correlation between histologic grade of malignancy and copy number of c-erbB-2 gene in breast carcinoma: a retrospective analysis of 176 cases. Cancer. 1990;65:1794–800.PubMedCrossRefGoogle Scholar
  26. 26.
    Iwaya K, Tsuda H, Hiraide H, Tamaki K, Tamakuma S, Fukutomi T, et al. Nuclear p53 immunoreaction associated with poor prognosis of breast cancer. Jpn J Cancer Res. 1991;82:835–40.PubMedGoogle Scholar
  27. 27.
    Hollstein M, Sidransky D, Vogelstein B, Harris CC. p53 mutations in human cancers. Science. 1991;253:49–53.PubMedCrossRefGoogle Scholar
  28. 28.
    Osborne RJ, Merlo GR, Mitsudomi T, Venesio T, Liscia DS, Cappa AP, et al. Mutations in the p53 gene in primary human breast cancers. Cancer Res. 1991;51:6194–8.PubMedGoogle Scholar
  29. 29.
    Tsuda H, Iwaya K, Fukutomi T, Hirohashi S. p53 mutations and c-erbB-2 amplification in intraductal and invasive breast carcinomas of high histologic grade. Jpn J Cancer Res. 1993;84:394–401.PubMedGoogle Scholar
  30. 30.
    Bergh J, Norberg T, Sjogren S, Lindgren A, Holmberg L. Complete sequencing of the p53 gene provides prognostic information in breast cancer patients, particularly in relation to adjuvant systemic therapy and radiotherapy. Nat Med. 1995;1:1029–34.PubMedCrossRefGoogle Scholar
  31. 31.
    Olivier M, Langerod A, Carrieri P, Bergh J, Klaar S, Eyfjord J, et al. The clinical value of somatic TP53 gene mutations in 1, 794 patients with breast cancer. Clin Cancer Res. 2006;12:1157–67.PubMedCrossRefGoogle Scholar
  32. 32.
    Ozcelik H, Pinnaduwage D, Bull SB, Andrulis IL. Type of TP53 mutation and ERBB2 amplification affects survival in node-negative breast cancer. Breast Cancer Res Treat. 2007;105:255–65.PubMedCrossRefGoogle Scholar
  33. 33.
    Escot C, Theillet C, Lidereau R, Spyratos F, Champeme ME, Gest J, et al. Genetic alteration of the c-myc protooncogene (MYC) in human primary breast carcinomas. Proc Natl Acad Sci USA. 1986;83:4834–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Ali IU, Lidereau R, Theillet C, Callahan R. Reduction to homozygosity of genes on chromosome 11 in human breast neoplasia. Science. 1987;238:185–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Chen L-C, Neubauer A, Kurisu W, Waldman FM, Ljung B-M, Goodson WIII, et al. Loss of heterozygosity on the short arm of chromosome 17 is associated with high proliferative capacity and DNA aneuploidy in primary human breast cancer. Proc Natl Acad Sci USA. 1991;88:3847–51.PubMedCrossRefGoogle Scholar
  36. 36.
    Devilee P, van Vliet M, Bardoel A, KIevits T, Kuipers-Dijkshoorn N, Pearson PL, et al. Frequent somatic imbalance of marker alleles for chromosome 1 in human primary breast carcinoma. Cancer Res. 1991;51:1020–5.PubMedGoogle Scholar
  37. 37.
    Bieche I, Champeme MH, Matifas F, Hacene K, Callahan R, Lidereau R. Loss of heterozygosity on chromosome 7q and aggressive primary breast cancer. Lancet. 1992;339:139–43.PubMedCrossRefGoogle Scholar
  38. 38.
    Sato T, Tanigami A, Yamakawa K, Akiyama F, Kasumi F, Sakamoto G, et al. Allelotype of breast cancer: cumulative allele losses promote tumor progression in primary breast cancer. Cancer Res. 1990;50:7184–9.PubMedGoogle Scholar
  39. 39.
    Tsuda H, Callen DF, Fukutomi T, Nakamura Y, Hirohashi S. Allele loss on chromosome 16q24.2-qter occurs frequently in breast cancers irrespectively of differences in phenotype and extent of spread. Cancer Res. 1994;54:513–7.PubMedGoogle Scholar
  40. 40.
    Cleton-Jansen A-M, Moerland EW, Kuipers-Dijkshoorn N, Cullen DF, Sutherland GR, Hansen B, et al. At least two different regions are involved in allelic imbalance on chromosome arm 16q in breast cancer. Genes Chromosomes Cancer. 1994;9:101–7.PubMedCrossRefGoogle Scholar
  41. 41.
    Matsumura K, Kallioniemi A, Kallioniemi O, Chen L, Smith HC, Pinkel D, et al. Deletion of chromosome 17p loci in breast cancer cells detected by fluorescence in situ hybridization. Cancer Res. 1992;52:3474–7.PubMedGoogle Scholar
  42. 42.
    Ichikawa D, Hashimoto N, Hoshima M, Yamaguchi T, Sawai K, Nakamura Y, et al. Analysis of numerical alterations in specific chromosomes by fluorescence in situ hybridization (FISH) as a diagnostic tool in breast cancer. Cancer. 1996;77:2064–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Dutrillaux B, Gerbault-Seureau M, Remvikos Y, Zafrani B, Prieur M. Breast cancer genetic evolution. I. Data from cytogenetics and DNA content. Breast Cancer Res Treat. 1991;19:245–55.PubMedCrossRefGoogle Scholar
  44. 44.
    Kokalj-Vokac N, Alemeida A, Gerbault-Seureau M, Malfoy B, Dutrillaux B. Two-color FISH characterization of i(1q), and der(1;16) in human breast cancer cells. Genes Chromosomes Cancer. 1993;7:8–14.PubMedCrossRefGoogle Scholar
  45. 45.
    Tsuarouha H, Pandis N, Bardi G, Teixeira MR, Andersen JA, Heim S. Karyotypic evolution in breast carcinomas with i(1)(q10) and der(1;16)(q10;p10) as the primary chromosome abnormality. Cytogenet Cell Genet. 1999;113:156–61.CrossRefGoogle Scholar
  46. 46.
    Kanai Y, Oda T, Tsuda H, Ochiai A, Hirohashi S. Point mutation of the E-cadherin gene in invasive lobular carcinoma of the breast. Jpn J Cancer Res. 1994;85:1035–9.PubMedGoogle Scholar
  47. 47.
    Berx G, Cleton-Jansen A-M, Nollet F, de Leeuw WJF, van de Vijver MJ, Cornelisse C, et al. E-cadherin is a tumour/invasion suppressor gene mutated in human lobular breast cancers. EMBO J. 1995;14:6107–15.PubMedGoogle Scholar
  48. 48.
    Berx G, Cleton-Jansen A-M, Strumane K, de Leeuw WJF, Nollet F, van Roy F, et al. E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene. 1996;13:1919–25.PubMedGoogle Scholar
  49. 49.
    Droufakou S, Deshmane V, Roylance R, Hanby A, Tomlinson I, Hart IR. Multiple ways of silencing E-cadherin gene expression in lobular carcinoma of the breast. Int J Cancer. 2001;92:404–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Sarrio D, Moreno-Bueno G, Hardisson D, Sanchez-Estevez C, Guo M, Herman JG, et al. Epigenetic and genetic alterations of APC and CDH1 genes in lobular breast cancer: relationships with abnormal E-cadherin and catenin expression and microsatellite instability. Int J Cancer. 2003;106:208–15.PubMedCrossRefGoogle Scholar
  51. 51.
    Catteau A, Harris WH, Xu CF, Solomon E. Methylation of the BRCA1 promoter region in sporadic breast and ovarian cancer: correlation with disease characteristics. Oncogene. 1999;18:1957–65.PubMedCrossRefGoogle Scholar
  52. 52.
    Esteller M, Silva JM, Dominguez G, Bonilla F, Matias-Guiu X, Lerma E, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Miyamoto K, Fukutomi T, Asada K, Wakazono K, Tsuda H, Asahara T, et al. Promoter hypermethylation and post-transcriptional mechanisms responsible for reduced BRCA1 immunoreactivity in sporadic human breast cancers. Jpn J Clin Oncol. 2002;32:79–84.PubMedCrossRefGoogle Scholar
  54. 54.
    Staff S, Isola J, Tanner M. Haplo-insufficiency of BRCA1 in sporadic breast cancer. Cancer Res. 2003;63:4978–83.PubMedGoogle Scholar
  55. 55.
    Wei M, Grushko TA, Dignam J, Hagos F, Nanda R, Sveen L, et al. BRCA1 promoter methylation in sporadic breast cancer is associated with reduced BRCA1 copy number and chromosome 17 aneusomy. Cancer Res. 2005;65:10692–9.PubMedCrossRefGoogle Scholar
  56. 56.
    Fukushige S, Matsubara K, Yoshida M, Sasaki M, Suzuki T, Semba K, et al. Localization of a novel v-erbB-related gene, c-erbB-2, on human chromosome 17 and its amplification is a gastric cancer cell line. Mol Cell Biol. 1986;6:955–8.PubMedGoogle Scholar
  57. 57.
    Kallioniemi A, Kallioniemi OP, Piper J, Tanner M, Stokke T, Chen L, et al. Detection and mapping of amplified DNA sequences in breast cancer by comparative genomic hybridization. Proc Natl Acad Sci USA. 1994;91:2156–60.PubMedCrossRefGoogle Scholar
  58. 58.
    Inazawa J, Ichikawa D, Date Y. New technology in cytolopathology. Analysis of chromosomal abnormalities by fluorescence in situ hybridization (FISH) and cancer cytopathology for cytopathological specimens of breast cancer. Byouri to Rinsho. 1996;14:1240–6. (in Japanese).Google Scholar
  59. 59.
    Courjal F, Theillet C. Comparative genomic hybridization analysis of breast tumors with predetermined profiles of DNA amplification. Cancer Res. 1997;57:4368–77.PubMedGoogle Scholar
  60. 60.
    Tsuda H, Takarabe T, Susumu N, Inazawa J, Okada S, Hirohashi S. Detection of numerical and structural alterations and fusion of chromosomes 16 and 1 in low-grade papillary breast carcinoma by fluorescence in situ hybridization. Am J Pathol. 1997;151:1027–34.PubMedGoogle Scholar
  61. 61.
    Tirkkonen M, Tanner M, Karhu R, Kallioniemi A, Isola J, Kallioniemi OP. Molecular cytogenetics of primary breast cancer by CGH. Genes Chromosomes Cancer. 1998;21:177–84.PubMedCrossRefGoogle Scholar
  62. 62.
    Tsuda H, Takarabe T, Hirohashi S. Correlation of the numerical and structural status of chromosome 16 with the histological type and grade of non-invasive and invasive breast carcinomas. Int J Cancer. 1999;84:381–7.PubMedCrossRefGoogle Scholar
  63. 63.
    Nailor TL, Greshock J, Wang Y, Colligon T, Clemmer V, Zaks TZ, et al. High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res. 2005;7:R1186–98.CrossRefGoogle Scholar
  64. 64.
    Roylance R, Gorman P, Papior T, Wan YL, Ives M, Watson JE, et al. A comprehensive study of chromosome 16q in invasive ductal and lobular breast carcinoma using array CGH. Oncogene. 2006;25:6544–53.PubMedCrossRefGoogle Scholar
  65. 65.
    Climent J, Garcia JL, Mao JH, Arsuaga J, Perez-Losada J. Characterization of breast cancer by array comparative genomic hybridization. Biochem Cell Biol. 2007;85:497–508.PubMedCrossRefGoogle Scholar
  66. 66.
    Tsuda H, Takarabe T, Fukutomi T, Hirohashi S. der(16)t(1;16)/der(1;16) in breast cancer detected by fluorescence in situ hybridization is an indicator of better patient prognosis. Genes Chromosomes Cancer. 1999;24:72–7.PubMedCrossRefGoogle Scholar
  67. 67.
    Yamamoto T, Ikawa S, Akiyama T, Semba K, Nomura N, Miyajima N, et al. Similarity of protein encoded by the human c-erb-B-2 gene to epidermal growth factor receptor. Nature. 1986;319:230–4.PubMedCrossRefGoogle Scholar
  68. 68.
    Jin Q, Esteva FJ. Cross-talk between the ErbB/HER family and the type I insulin-like growth factor receptor signaling pathway in breast cancer. J Mammary Gland Biol Neoplasia. 2008;13:485–98.PubMedCrossRefGoogle Scholar
  69. 69.
    Tsuda H. HER-2 (c-erbB-2) test update: present status and problems. Breast Cancer. 2006;13:236–48.PubMedCrossRefGoogle Scholar
  70. 70.
    Paik S, Bryant J, Tan-Chiu E, Yothers G, Park C, Wickerham DL, et al. HER2 and choice of adjuvant chemotherapy for invasive breast cancer: national surgical adjuvant breast and bowel project protocol B-15. J Natl Cancer Inst. 2000;92:1991–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Toi M, Nakamura S, Kuroi K, Iwata H, Ohno S, Masuda N, et al. Phase II study of preoperative sequential FEC and docetaxel predicts of pathological response and disease free survival. Breast Cancer Res Treat. 2008;110:531–9.PubMedCrossRefGoogle Scholar
  72. 72.
    van de Vijver MJ, Peterse JL, Mooi WJ, Wisman P, Lomans J, Dalesio O, et al. Neu-protein overexpression in breast cancer. Association with comedo-type ductal carcinoma in situ and limited prognostic value in stage II breast cancer. N Engl J Med. 1988;319:1239–45.PubMedGoogle Scholar
  73. 73.
    Tsuda H, Fukutomi T, Hirohashi S. Pattern of gene alterations in intraductal breast neoplasms associated with histological type and grade. Clin Cancer Res. 1995;1:261–7.PubMedGoogle Scholar
  74. 74.
    Tsuda H, Hirohashi S. Multiple developmental pathways to highly aggressive breast cancers disclosed by comparison of histologic grades and c-erbB-2 expression patterns in both the intraductal and invasive portions. Pathol Int. 1998;48:518–25.PubMedCrossRefGoogle Scholar
  75. 75.
    Knudson AG Jr, Hethcote HW, Brown BW. Mutation and childhood cancer: a probabilistic model for the incidence of retinoblastoma. Proc Natl Acad Sci USA. 1975;72:5116–20.PubMedCrossRefGoogle Scholar
  76. 76.
    Srivastava S, Zou ZQ, Pirollo K, Blattner W, Chang EH. Germ-line transmission of a mutated p53 gene in a cancer-prone family with Li-Fraumeni syndrome. Nature. 1990;348:747–9.PubMedCrossRefGoogle Scholar
  77. 77.
    Malkin D, Li FP, Strong LC, Fraumeni JF Jr, Nelson CE, Kim DH, et al. Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms. Science. 1990;250:1233–8. erratum in science. 1993;259:878.PubMedCrossRefGoogle Scholar
  78. 78.
    Donehower LA, Bradley A. The tumor suppressor p53. Biochim Biophys Acta. 1993;1155:181–205.PubMedGoogle Scholar
  79. 79.
    Levine AJ. p53, the cellular gatekeeper for growth and division. Cell. 1997;88:323–31.PubMedCrossRefGoogle Scholar
  80. 80.
    Oren M, Gottlieb TM, Oren M. p53 in growth control and neoplasia. Biochim Biophys Acta. 1996;1287:77–102.PubMedGoogle Scholar
  81. 81.
    Toledo F, Wahl GM. Regulating the p53 pathway: in vitro and in vivo veritas. Nat Rev Cancer. 2006;6:909–23.PubMedCrossRefGoogle Scholar
  82. 82.
    Tsuda H, Hirohashi S. Association among p53 gene mutation, nuclear accumulation of the p53 protein and aggressive phenotypes in breast cancer. Int J Cancer. 1994;57:498–503.PubMedCrossRefGoogle Scholar
  83. 83.
    Vincent-Salomon A, Gruel N, Lucchesi C, MacGrogan G, Dendale R, Sigal-Zafrani B, et al. Identification of typical medullary breast carcinoma as a genomic sub-group of basal-like carcinomas, a heterogeneous new molecular entity. Breast Cancer Res. 2007;9:R24.PubMedCrossRefGoogle Scholar
  84. 84.
    Hirohashi S. Inactivation of the E-cadherin-mediated cell adhesion system in human cancers. Am J Pathol. 1998;153:333–9.PubMedGoogle Scholar
  85. 85.
    Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G, et al. High-resolution genomic profiling reveals association of chromosomal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer. Clin Cancer Res. 2006;12:345–52.PubMedCrossRefGoogle Scholar
  86. 86.
    Cleton-Jansen AM, Buerger H, Haar N, Philippo K, van de Vijver MJ, Boecker W, et al. Different mechanisms of chromosome 16 loss of heterozygosity in well- versus poorly differentiated ductal breast cancer. Genes Chromosomes Cancer. 2004;41:109–16.PubMedCrossRefGoogle Scholar
  87. 87.
    Tsuda H, Uei Y, Fukutomi T, Hirohashi S. Different incidence of loss of heterozygosity on chromosome 16q between intraductal papilloma and intracystic papillary carcinoma of the breast. Jpn J Cancer Res. 1994;85:992–6.PubMedGoogle Scholar
  88. 88.
    Lakhani SR, Collins N, Stratton MR, Sloane JP. Atypical ductal hyperplasia of the breast: clonal proliferation with loss of heterozygosity on chromosomes 16q and 17p. J Clin Pathol. 1995;48:611–5.PubMedCrossRefGoogle Scholar
  89. 89.
    Tsuda H, Takarabe T, Akashi-Tanaka S, Fukutomi T, Hirohashi S. Pattern of loss of heterozygosity on chromosome 16q differs between an atypical proliferative lesion and a ductal carcinoma which occurred metachronously at the same area of the breast. Mod Pathol. 2001;14:382–8.PubMedCrossRefGoogle Scholar
  90. 90.
    Tsuda H, Takarabe T, Fukutomi T, Hirohashi S. Preferential occurrence of breast carcinomas with loss of 16q and der(16)t(1;16)/der(1;16) in middle-aged patients with hyperproliferative changes in mammary glands. Jpn J Cancer Res. 2000;91:692–9.PubMedGoogle Scholar
  91. 91.
    Tsuda H, Sakamaki C, Tsugane S, Fukutomi T, Hirohashi S. A prospective study on the significance of gene and chromosome alterations as prognostic indicators of breast cancer patients with lymph node metastases. Breast Cancer Res Treat. 1998;48:21–32.PubMedCrossRefGoogle Scholar
  92. 92.
    Emi M, Yoshimoto M, Sato T, Matsumoto S, Utada Y, Ito I. et al. Allelic loss at 1p34, 13q12, 17p13.3, and 17q21.1 correlates with poor postoperative prognosis in breast cancer. Genes Chromosomes Cancer. 1999;26:134–41.PubMedCrossRefGoogle Scholar
  93. 93.
    Utada Y, Emi M, Yoshimoto M, Kasumi F, Akiyama F, Sakamoto G, et al. Allelic loss at 1p34–36 predicts poor prognosis in node-negative breast cancer. Clin Cancer Res. 2000;6:3193–8.PubMedGoogle Scholar
  94. 94.
    Melchor L, Benitez J. An integrative hypothesis about the origin oand development of sporadic and familial breast cancer subtypes. Carcinogenesis. 2008;29:1475–82.PubMedCrossRefGoogle Scholar
  95. 95.
    Adelaide J, Finetti P, Rekhoushe I, Repellini L, Geneix J, Sircoulomb F, et al. Integrated profiling of basal and luminal breast cancers. Cancer Res. 2007;67:11565–75.PubMedCrossRefGoogle Scholar
  96. 96.
    The Japanese Breast Cancer Society. General rules for clinical and pathological recording of breast cancer, the 16th edn. Kanehara Shuppan: Tokyo; 2008 (in Japanese).Google Scholar
  97. 97.
    World Health Organization. Tumours of the breast. In: Tavassoli FA, Devilee P, editors. Pathology and genetics of tumours of the breast and female genital organs. Lyon: IARC Press; 2003. p. 9–112.Google Scholar
  98. 98.
    Rosen PP. The pathology of invasive breast carcinoma. In: Harris JR, Hellman S, Henderson IC, Kinne DW, editors. Breast diseases. 2nd edn. Philadelphia: J. B. Lippincott; 1991. p. 245–96.Google Scholar
  99. 99.
    Akashi-Tanaka S, Fukutomi T, Nanasawa T, Matsuo K, Hasegawa T, Tsuda H. Treatment of noninvasive carcinoma: fifteen-year results at the National Cancer Center Hospital in Tokyo. Breast Cancer. 2000;7:341–4.PubMedCrossRefGoogle Scholar
  100. 100.
    Rosen PP. Intraductal carcinoma. In: Rosen PP, editor. Rosen’s breast pathology. 2nd edn. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 253–323.Google Scholar
  101. 101.
    Buerger H, Otterbach F, Simon R, Poremba C, Diallo R, Decker T, et al. Comparative genomic hybridization of ductal carcinoma in situ of the breast-evidence of multiple genetic pathways. J Pathol. 1999;187:396–402.PubMedCrossRefGoogle Scholar
  102. 102.
    Vincent-Salomon A, Lucchesi C, Gruel N, Raynal V, Pierron G, et al. Integrated genomic and transcriptomic analysis of ductal carcinoma in situ of the breast. Clin Cancer Res. 2008;14:1956–65.PubMedCrossRefGoogle Scholar
  103. 103.
    Lakhani SR, Collins N, Sloane JP, Stratton MR. Loss of heterozygosity in lobular carcinoma in situ of the breast. J Clin Pathol Mol Pathol. 1995;48:M74–8.CrossRefGoogle Scholar
  104. 104.
    Mohsin SK, O’Connell PO, Alled DC, Libby AL. Biomarker profile and genetic abnormalities in lobular carcinoma in situ. Breast Cancer Res Treat. 2005;90:249–56.PubMedCrossRefGoogle Scholar
  105. 105.
    Volante M, Sapino A, Croce S, Bussolati G. Heterogeneous versus homogeneous genetic nature of multiple foci of in situ carcinoma of the breast. Hum Pathol. 2003;34:1163–9.PubMedCrossRefGoogle Scholar
  106. 106.
    Page DL, Sakamoto G. Infiltrating carcinoma: major histologicaltypes. In: Page DL, Anderson TJ, editors. Diagnostic histopathology of the breast. Edinburgh: Churchill Livingstone; 1987. p. 193–205.Google Scholar
  107. 107.
    Bloom HJG, Richardson WW. Histological grading and prognosis in breast cancer. Br J Cancer. 1957;11:359–77.PubMedGoogle Scholar
  108. 108.
    Elston CW, Ellis IO. Pathologic prognostic factors in breast cancer. I. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology. 1991;19:403–10.PubMedCrossRefGoogle Scholar
  109. 109.
    Le Doussal V, Tubiana-Hulin M, Friedman S, Hacene K, Spyratos F, Brunet M. Prognostic value of histologic grade nuclear components of Scarff-Bloom-Richardson (SBR). An improved score modification based on a multivariate analysis of 1262 invasive ductal breast carcinomas. Cancer. 1989;64:1914–21.PubMedCrossRefGoogle Scholar
  110. 110.
    Tsuda H. Individualization of breast cancer based on histopathological features and molecular alterations. Breast Cancer. 2008;15:121–32.PubMedCrossRefGoogle Scholar
  111. 111.
    Yoshimoto M, Sakamoto G, Ohashi Y. Time dependency of the influence of prognostic factors on relapse in breast cancer. Cancer. 1993;72:2993–3001.PubMedCrossRefGoogle Scholar
  112. 112.
    Nielsen TO, Hsu FD, Jense K, Cheang M, Karaca G, Hu Z, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.PubMedCrossRefGoogle Scholar
  113. 113.
    Tsuda H, Morita D, Kimura M, Shinto E, Ohtsuka Y, Matsubara O, et al. Correlation of KIT and EGFR overexpression with invasive ductal carcinoma of solid-tubular subtype, nuclear grade 3, and mesenchymal or myoepithelial differentiation in breast cancer. Cancer Sci. 2005;96:48–53.PubMedGoogle Scholar
  114. 114.
    Rakha EA, Putti TC, Abd El-Rehim DM, Paish C, Green AR, Powe DG, et al. Morphological and immunophenotypic analysis of breast carcinomas with basal and myoepithelial differentiation. J Pathol. 2006;208:495–506.PubMedCrossRefGoogle Scholar
  115. 115.
    Abd El-Rehim DM, Pinder SE, Paish CE, Bell J, Blamey RW, Robertson JF, et al. Expression of luminal and basal cytokeratins in human breast carcinoma. J Pathol. 2004;203:661–71.PubMedCrossRefGoogle Scholar
  116. 116.
    Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.PubMedCrossRefGoogle Scholar
  117. 117.
    Wetzels RH, Kuijpers HJ, Lane EB, Leigh IM, Troyanovsky SM, Holland R, et al. Basal cell-specific and hyperproliferation-related keratins in human breast cancer. Am J Pathol. 1991;138:751–63.PubMedGoogle Scholar
  118. 118.
    Tsuda H, Takarabe T, Hasegawa T, Murata T, Hirohashi S. Myoepithelial features in high-grade invasive ductal carcinomas with large central acellular zones. Hum Pathol. 1999;30:1134–9.PubMedCrossRefGoogle Scholar
  119. 119.
    Tsuda H, Takarabe T, Hasegawa F, Fukutomi T, Hirohashi S. Large central acellular zones indicating myoepithelial tumor differentiation in high-grade invasive ductal carcinomas as markers of predisposition to lung and brain metastases. Am J Surg Pathol. 2000;24:197–202.PubMedCrossRefGoogle Scholar
  120. 120.
    Allred DC, Clark GM, Tandon AK, Molina R, Tormey DC, Osborne CK, et al. HER-2/neu in node-negative breast cancer: prognostic significance of overexpression influenced by the presence of in situ carcinoma. J Clin Oncol. 1992;10:599–605.PubMedGoogle Scholar
  121. 121.
    Anderson JM, Ariga R, Govil H, Bloom KJ, Francescatti D, Reddy VB, et al. Assessment of Her-2/Neu status by immunohistochemistry and fluorescence in situ hybridization in mammary Paget disease and underlying carcinoma. Appl Immunohistochem Mol Morphol. 2003;11:120–4.PubMedGoogle Scholar
  122. 122.
    Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.PubMedCrossRefGoogle Scholar
  123. 123.
    Jacquemier J, Padovani L, Rabayrol L, Lakhani SR, Penault-Llorca F, Denoux Y, et al. Typical medullary breast carcinomas have a basal/myoepithelial phenotype. J Pathol. 2005;207:260–8.PubMedCrossRefGoogle Scholar
  124. 124.
    Azoulay S, Laé M, Fréneaux P, Merle S, Al Ghuzlan A, Chnecker C, et al. KIT is highly expressed in adenoid cystic carcinoma of the breast, a basal-like carcinoma associated with a favorable outcome. Mod Pathol. 2005;18:1623–31.PubMedGoogle Scholar
  125. 125.
    Reis-Filho JS, Milanezi F, Steele D, Savage K, Simpson PT, Nesland JM, et al. Metaplastic breast carcinomas are basal-like tumours. Histopathology. 2006;49:10–21.PubMedCrossRefGoogle Scholar
  126. 126.
    O’Malley FP, Bane A. An update on apocrine lesions of the breast. Histopathology. 2008;52:3–10.PubMedGoogle Scholar
  127. 127.
    Hanby AM, Hughes TA. In situ and invasive lobular neoplasia of the breast. Histopathology. 2008;52:58–66.PubMedGoogle Scholar
  128. 128.
    Tavassoli FA. Infiltrating carcinoma: common and familiar special types. In: Tavassoli FA, editor. Pathology of the breast. 2nd ed. McGraw-Hill: New York; 1999. p. 401–80.Google Scholar
  129. 129.
    Flagiello D, Gerbault-Seureau M, Sastre-Garau X, Padoy E, Vielh P, Dutrillaux B. Highly recurrent der(1;16)(q10;p10) and other 16q arm alterations in lobular breast cancer. Genes Chromosomes Cancer. 1998;23:300–6.PubMedCrossRefGoogle Scholar
  130. 130.
    Wheeler DT, Tai LH, Bratthauer GL, Waldner DL, Tavassoli FA. Tubulolobular carcinoma of the breast: an analysis of 27 cases of a tumor with a hybrid morphology and immunoprofile. Am J Surg Pathol. 2004;8:1587–93.Google Scholar
  131. 131.
    Kuroda H, Tamaru J, Takeuchi I, Ohnisi K, Sakamoto G, Adachi A, et al. Expression of E-cadherin, alpha-catenin, and beta-catenin in tubulolobular carcinoma of the breast. Virchows Arch. 2006;448:500–5.PubMedCrossRefGoogle Scholar
  132. 132.
    Esposito NN, Chivukula M, Dabbs DJ. The ductal phenotypic expression of the E-cadherin/catenin complex in tubulolobular carcinoma of the breast: an immunohistochemical and clinicopathologic study. Mod Pathol. 2007;20:130–8.PubMedCrossRefGoogle Scholar
  133. 133.
    Ridolfi RL, Rosen PP, Port A, Kinne D, Miké V. Medullary carcinoma of the breast: a clinicopathologic study with 10 year follow-up. Cancer. 1977;40:1365–85.PubMedCrossRefGoogle Scholar
  134. 134.
    Lakhani SR, Jacquemier J, Sloane JP, Gusterson BA, Anderson TJ, van de Vijver MJ, et al. Multifactorial analysis of differences between sporadic breast cancers and cancers involving BRCA1 and BRCA2 mutations. J Natl Cancer Inst. 1998;90:1138–45.PubMedCrossRefGoogle Scholar
  135. 135.
    Miyoshi Y, Murase K, Oh K. Basal-like subtype and BRCA1 dysfunction in breast cancers. Int J Clin Oncol. 2008;13:395–400.PubMedCrossRefGoogle Scholar
  136. 136.
    Turner NC, Reis-Filho JS, Russell AM, Springall RJ, Ryder K, Steele D, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;26:2126–32.PubMedCrossRefGoogle Scholar
  137. 137.
    Magdinier F, Ribieras S, Lenoir GM, Frappart L, Dante R. Down-regulation of BRCA1 in human sporadic breast cancer; analysis of DNA methylation patterns of the putative promoter region. Oncogene. 1998;17:3169–76.PubMedCrossRefGoogle Scholar
  138. 138.
    Weigelt B, Horlings HM, Kreike B, Hayes MM, Hauptmann M, Wessels LF, et al. Refinement of breast cancer classification by molecular characterization of histological special types. J Pathol. 2008;216:141–50.PubMedCrossRefGoogle Scholar
  139. 139.
    Page DL, Ellis IO, Elston CW. Histologic grading of breast cancer. Let’s do it. Am J Clin Pathol. 1995;103:123–4.PubMedGoogle Scholar
  140. 140.
    Koyama H, Asaishi K, Yoshimoto M, Enomoto K, Yamamoto H, Uchida M, et al. Recurrence of node-negative breast cancer. Nyugan no Rinsho. 1989;4:69–75. (in Japanese).Google Scholar
  141. 141.
    Watanabe T, Sano M, Takashima S, Kitaya T, Tokuda Y, Yoshimoto M, et al. Oral uracil-tegafur (UFT) compared with classical cyclophosphamide, methotrexate, 5-fluorouracil (CMF) as postoperative chemotherapy in patients with node-negative, high-risk breast cancer: Results from national surgical adjuvant study for breast cancer (N-SAS-BC) 01 trial. J Clin Oncol. 2009;27:1368–74.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2009

Authors and Affiliations

  1. 1.Pathology Section, Clinical Laboratory DivisionNational Cancer Center HospitalTokyoJapan
  2. 2.Department of Basic PathologyNational Defense Medical CollegeSaitamaJapan

Personalised recommendations