Breast Cancer

, Volume 16, Issue 4, pp 275–280 | Cite as

Possible treatment strategies for triple-negative breast cancer on the basis of molecular characteristics

Conference Paper Symposium: Triple negative breast cancer


The intrinsic subtype has demonstrated that breast cancers can be classified into biologically and clinically meaningful subgroups. Most breast tumors categorized as one of the intrinsic subtypes, i.e., basal-like, have an estrogen receptor-negative, progesterone receptor-negative, and human epidermal growth factor receptor 2-negative phenotype, so-called triple-negative (TN) phenotype; however, TN breast cancer is not a synonym for basal-like subtype. TN breast cancers account for 10–20% of all breast cancers, and are more biologically aggressive than breast cancers of other subgroups. Tailored therapies, such as endocrine therapy and anti-HER2 therapy, are not applicable to TN breast cancer. To develop novel strategies against TN breast cancer, it is essential to understand the specific pathways driving the aggressive behavior of TN breast cancer. Preclinical and clinical studies have suggested that DNA-damaging agents and poly ADP-ribose polymerase inhibitors are active in TN breast cancer harboring BRCA1 dysfunction; anti-epidermal growth factor receptor (EGFR) antibodies and EGFR tyrosine kinase inhibitors are active in TN breast cancer with EGFR gene amplification; dasatinib is active in TN breast cancer with activated Src tyrosine kinases; inhibitors of a mammalian target of rapamycin are active in TN breast cancer with loss of PTEN tumor suppressor; antiangiogenic therapies enhance antitumor activity of chemotherapeutic agents in hypervascular TN breast cancer; and irinotecan, trabectedin, ixabepilone, and ABI-007 are active in TN breast cancer. A number of clinical trials are ongoing to clarify the antitumor activity of these challenging treatment strategies. Further biological characterization of TN breast cancer is needed to develop more specific treatment strategies against TN breast cancer.


Triple-negative breast cancer BRCA1 EGFR PARP inhibitor Dasatinib 


  1. 1.
    Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature. 2000;406:747–52.PubMedCrossRefGoogle Scholar
  2. 2.
    Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98:10869–74.PubMedCrossRefGoogle Scholar
  3. 3.
    Nielsen TO, Hsu FD, Jensen K, et al. Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res. 2004;10:5367–74.PubMedCrossRefGoogle Scholar
  4. 4.
    Reis-Filho JS, Tutt AN. Triple negative tumours: a critical review. Histopathology. 2008;52:108–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Kurebayashi J, Moriya T, Ishida T, et al. The prevalence of intrinsic subtypes and prognosis in breast cancer patients of different races. Breast. 2007;16(Suppl 2):S72–7.PubMedCrossRefGoogle Scholar
  6. 6.
    Carey LA, Dees EC, Sawyer L, et al. The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res. 2007;13:2329–34.PubMedCrossRefGoogle Scholar
  7. 7.
    Dent R, Trudeau M, Pritchard KI, et al. Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res. 2007;13:4429–34.PubMedCrossRefGoogle Scholar
  8. 8.
    Haffty BG, Yang Q, Reiss M, et al. Locoregional relapse and distant metastasis in conservatively managed triple negative early-stage breast cancer. J Clin Oncol. 2006;24:5652–7.PubMedCrossRefGoogle Scholar
  9. 9.
    Rakha EA, El-Sayed ME, Green AR, et al. Prognostic markers in triple-negative breast cancer. Cancer. 2007;109:25–32.PubMedCrossRefGoogle Scholar
  10. 10.
    Tischkowitz M, Brunet JS, Begin LR, et al. Use of immunohistochemical markers can refine prognosis in triple negative breast cancer. BMC Cancer. 2007;7:134.PubMedCrossRefGoogle Scholar
  11. 11.
    Bauer KR, Brown M, Cress RD, et al. Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer Registry. Cancer. 2007;109:1721–8.PubMedCrossRefGoogle Scholar
  12. 12.
    Morris GJ, Naidu S, Topham AK, et al. Differences in breast carcinoma characteristics in newly diagnosed African-American and Caucasian patients: a single-institution compilation compared with the National Cancer Institute’s Surveillance, Epidemiology, and end results database. Cancer. 2007;110:876–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Dent R, Hanna WM, Trudeau M, et al. Pattern of metastatic spread in triple-negative breast cancer. Breast Cancer Res Treat. 2008. [Epub ahead of print]. doi:10.1007/s10549-008-0086-2.
  14. 14.
    Liedtke C, Mazouni C, Hess KR, et al. Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol. 2008;26:1275–81.PubMedCrossRefGoogle Scholar
  15. 15.
    Turner N, Tutt A, Ashworth A. Hallmarks of ‘BRCAness’ in sporadic cancers. Nat Rev Cancer. 2004;4:814–9.PubMedCrossRefGoogle Scholar
  16. 16.
    Turner NC, Reis-Filho JS. Basal-like breast cancer and the BRCA1 phenotype. Oncogene. 2006;25:5846–53.PubMedCrossRefGoogle Scholar
  17. 17.
    Kennedy RD, Quinn JE, Mullan PB, et al. The role of BRCA1 in the cellular response to chemotherapy. J Natl Cancer Inst. 2004;96:1659–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Vaziri SA, Krumroy LM, Elson P, et al. Breast tumor immunophenotype of BRCA1-mutation carriers is influenced by age at diagnosis. Clin Cancer Res. 2001;7:1937–45.PubMedGoogle Scholar
  19. 19.
    Foulkes WD, Stefansson IM, Chappuis PO, et al. Germline BRCA1 mutations and a basal epithelial phenotype in breast cancer. J Natl Cancer Inst. 2003;95:1482–5.PubMedGoogle Scholar
  20. 20.
    Sorlie T, Tibshirani R, Parker J, et al. Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA. 2003;100:8418–23.PubMedCrossRefGoogle Scholar
  21. 21.
    Lakhani SR, Reis-Filho JS, Fulford L, et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin Cancer Res. 2005;11:5175–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Turner NC, Reis-Filho JS, Russell AM, et al. BRCA1 dysfunction in sporadic basal-like breast cancer. Oncogene. 2007;14:2126–32.CrossRefGoogle Scholar
  23. 23.
    Abd El-Rehim DM, Ball G, Pinder SE, et al. High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer. 2005;116:340–50.PubMedCrossRefGoogle Scholar
  24. 24.
    Esteller M, Silva JM, Dominguez G, et al. Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors. J Natl Cancer Inst. 2000;92:564–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Osin P, Lu YJ, Stone J, et al. Distinct genetic and epigenetic changes in medullary breast cancer. Int J Surg Pathol. 2003;11:153–8.PubMedCrossRefGoogle Scholar
  26. 26.
    Beger C, Pierce LN, Kruger M, et al. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci USA. 2001;98:130–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Gilmore PM, McCabe N, Quinn JE, et al. BRCA1 interacts with and is required for paclitaxel-induced activation of mitogen-activated protein kinase 3. Cancer Res. 2004;64:4148–54.PubMedCrossRefGoogle Scholar
  28. 28.
    Chabalier C, Lamare C, Racca C, et al. BRCA1 downregulation leads to premature inactivation of spindle checkpoint and confers paclitaxel resistance. Cell Cycle. 2006;5:1001–7.PubMedGoogle Scholar
  29. 29.
    Rottenberg S, Nygren AO, Pajic M, et al. Selective induction of chemotherapy resistance of mammary tumors in a conditional mouse model for hereditary breast cancer. Proc Natl Acad Sci USA. 2007;104:12117–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Harris LN, Broadwater G, Lin NU, et al. Molecular subtypes of breast cancer in relation to paclitaxel response and outcomes in women with metastatic disease: results from CALGB 9342. Breast Cancer Res. 2006;8:R66.PubMedCrossRefGoogle Scholar
  31. 31.
    Kurebayashi J, Yamamoto Y, Kurosumi M, et al. Loss of BRCA1 expression may predict shorter time-to-progression in metastatic breast cancer patients treated with taxanes. Anticancer Res. 2006;26:695–701.PubMedGoogle Scholar
  32. 32.
    Garber JE, Richardson A, Harris LN, et al. Neo-adjuvant cisplatin in triple-negative breast cancer (abstract 3074). Breast Cancer Res Treat. 2006;1000:S149.Google Scholar
  33. 33.
    Torrisi R, Balduzzi A, Ghisini R, et al. Tailored preoperative treatment of locally advanced triple negative (hormone receptor negative and HER2 negative) breast cancer with epirubicin, cisplatin, and infusional fluorouracil followed by weekly paclitaxel. Cancer Chemother Pharmacol. 2008;62:667–72.PubMedCrossRefGoogle Scholar
  34. 34. Available at
  35. 35.
    Leong CO, Vidnovic N, DeYoung MP, et al. The p63/p73 network mediates chemosensitivity to cisplatin in a biologically defined subset of primary breast cancers. J Clin Invest. 2007;117:1370–80.PubMedCrossRefGoogle Scholar
  36. 36.
    Farmer H, McCabe N, Lord CJ, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434:917–21.PubMedCrossRefGoogle Scholar
  37. 37.
    Bryant HE, Schultz N, Thomas HD, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly (ADP-ribose) polymerase. Nature. 2005;434:913–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Yap TA, Boss DS, Fong PC, et al. First in human phase I pharmacokinetic and pharmacodynamic study of KU-0059436, a small molecule inhibitor of poly ADP-ribose polymerase in cancer patients, including BRCA1/2 mutation carriers. J Clin Oncol. 2007;25(Suppl 18):45S.Google Scholar
  39. 39.
    Kummar S, Kinders R, Gutierrez M, et al. Inhibition of poly (ADP-ribose) polymerase (PARP) by ABT-888 in patients with advanced malignancies: results of a phase 0 trial. J Clin Oncol. 2007;25(Suppl 18):142S.Google Scholar
  40. 40.
    Helleday T, Bryant HE, Schultz N. Poly (ADP-ribose) polymerase (PARP-1) in homologous recombination and as a target for cancer therapy. Cell Cycle. 2005;4:1176–8.PubMedGoogle Scholar
  41. 41.
    Siziopikou KP, Ariga R, Proussaloglou KE, et al. The challenging estrogen receptor-negative/progesterone receptor-negative/HER-2-negative patient: a promising candidate for epidermal growth factor receptor-targeted therapy? Breast J. 2006;12:360–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Reis-Filho J, Pinheiro C, Lambros M, et al. EGFR amplification and lack of activating mutations in metaplastic breast carcinomas. J Pathol. 2006;209:445–53.PubMedCrossRefGoogle Scholar
  43. 43.
    Bhargava R, Gerald WL, Li AR, et al. EGFR gene amplification in breast cancer: correlation with epidermal growth factor receptor mRNA and protein expression and HER-2 status and absence of EGFR-activating mutations. Mod Pathol. 2005;18:1027–33.PubMedCrossRefGoogle Scholar
  44. 44.
    Reis-Filho JS, Milanezi F, Carvalho S, et al. Metaplastic breast carcinomas exhibit EGFR, but not HER2, gene amplification and overexpression: immunohistochemical and chromogenic in situ hybridization analysis. Breast Cancer Res. 2005;7:R1028–35.PubMedCrossRefGoogle Scholar
  45. 45.
    Takano T, Ohe Y, Sakamoto H, et al. Epidermal growth factor receptor gene mutations and increased copy numbers predict gefitinib sensitivity in patients with recurrent non-small-cell lung cancer. J Clin Oncol. 2005;23:6829–37.PubMedCrossRefGoogle Scholar
  46. 46.
    Moroni M, Veronese S, Benvenuti S, et al. Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: a cohort study. Lancet Oncol. 2005;6:279–86.PubMedCrossRefGoogle Scholar
  47. 47.
    Hirsch FR, Varella-Garcia M, Bunn PA Jr, et al. Molecular predictors of outcome with gefitinib in a phase III placebo-controlled study in advanced non-small-cell lung cancer. J Clin Oncol. 2006;24:5034–42.PubMedCrossRefGoogle Scholar
  48. 48.
    Carey LA, Mayer E, Marcom PK, et al. TBCRC 001: EGFR inhibition with cetuximab in metastatic triple negative (basal-like) breast cancer (abstract 307). Breast Cancer Res Treat. 2007;106(Suppl 1):S32.Google Scholar
  49. 49.
    O’Shaughnessy J, Weckstein DJ, Vukelja SJ, et al. Preliminary results of a randomized phase II study of weekly irinotecan/carboplatin with or without cetuximab in patients with metastatic breast cancer (abstract 308). Breast Cancer Res Treat. 2007;106(Suppl 1):S32.Google Scholar
  50. 50.
    Siehl J, Thiel E. C-kit, GIST, and imatinib. Recent Results Cancer Res. 2007;176:145–51.PubMedCrossRefGoogle Scholar
  51. 51.
    Simon R, Panussis S, Maurer R, et al. KIT (CD117)-positive breast cancers are infrequent and lack KIT gene mutations. Clin Cancer Res. 2004;10:178–83.PubMedCrossRefGoogle Scholar
  52. 52.
    Modi S, Seidman AD, Dickler M, et al. A phase II trial of imatinib mesylate monotherapy in patients with metastatic breast cancer. Breast Cancer Res Treat. 2005;90:157–63.PubMedCrossRefGoogle Scholar
  53. 53.
    Izzedine H, Buhaescu I, Rixe O, et al. Sunitinib malate. Cancer Chemother Pharmacol. 2007;60:357–64.PubMedCrossRefGoogle Scholar
  54. 54.
    Finn RS, Dering J, Ginther C, et al. Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/”triple-negative” breast cancer cell lines growing in vitro. Breast Cancer Res Treat. 2007;105:319–26.PubMedCrossRefGoogle Scholar
  55. 55.
    Huang F, Reeves K, Han X, et al. Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res. 2007;67:2226–38.PubMedCrossRefGoogle Scholar
  56. 56.
    Saal LH, Holm K, Maurer M, et al. PIK3CA mutations correlate with hormone receptors, node metastasis, and ERBB2, and are mutually exclusive with PTEN loss in human breast carcinoma. Cancer Res. 2005;65:2554–9.PubMedCrossRefGoogle Scholar
  57. 57.
    Sachdev JC, Jahanzeb M. Evolution of bevacizumab-based therapy in the management of breast cancer. Clin Breast Cancer. 2008;8:402–10.PubMedCrossRefGoogle Scholar
  58. 58.
    Miller K, Wang M, Gralow J, et al. Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med. 2007;357:2666–76.PubMedCrossRefGoogle Scholar
  59. 59.
    Strieth S, Eichhorn ME, Werner A, et al. Paclitaxel encapsulated in cationic liposomes increases tumor microvessel leakiness and improves therapeutic efficacy in combination with Cisplatin. Clin Cancer Res. 2008;14:4603–11.PubMedCrossRefGoogle Scholar
  60. 60.
    Perez EA, Hillman DW, Mailliard JA, et al. Randomized phase II study of two irinotecan schedules for patients with metastatic breast cancer refractory to an anthracycline, a taxane, or both. J Clin Oncol. 2004;22:2849–55.PubMedCrossRefGoogle Scholar
  61. 61.
    Fracasso PM, Rudek MA, Naughton MJ, et al. Phase I study combining UCN-01 with irinotecan in resistant solid tumor malignancies (abstract 3139). J Clin Oncol. 2004;22:229.Google Scholar
  62. 62.
    Pommier Y, Kohlhagen G, Bailly C, et al. DNA sequence- and structure-selective alkylation of guanine N2 in the DNA minor groove by ecteinascidin 743, a potent antitumor compound from the Caribbean tunicate Ecteinascidia turbinata. Biochemistry. 1996;35:13303–9.PubMedCrossRefGoogle Scholar
  63. 63.
    Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res. 1995;55:2325–33.PubMedGoogle Scholar
  64. 64.
    Gradishar WJ, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol. 2005;23:7794–803.PubMedCrossRefGoogle Scholar
  65. 65.
    Altundag K, Bulut N, Dizdar O, et al. Albumin-bound paclitaxel, ABI-007 may show better efficacy than paclitaxel in basal-like breast cancers: association between caveolin-1 expression and ABI-007. Breast Cancer Res Treat. 2006;100:329–30.PubMedCrossRefGoogle Scholar
  66. 66.
    Pinilla SM, Honrado E, Hardisson D, et al. Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat. 2006;99:85–90.PubMedCrossRefGoogle Scholar

Copyright information

© The Japanese Breast Cancer Society 2009

Authors and Affiliations

  1. 1.Department of Breast and Thyroid SurgeryKawasaki Medical SchoolOkayamaJapan

Personalised recommendations