Breast Cancer

, Volume 15, Issue 4, pp 256–261 | Cite as

Estrogen signaling pathway and hormonal therapy

  • Shin-ichi Hayashi
  • Yuri Yamaguchi
Special Feature Current topics in endocrine therapy for breast cancer


Hormonal therapy, such as estrogen-targeting therapy, has undergone remarkable development in recent several years, using drugs such as LH–RH agonists, new SERMs and third-generation aromatase inhibitors. Several ongoing large-scale international clinical trials for hormonal therapy are establishing the standard protocol for treatments with these drugs. On the other hand, there have been attempts to predict the individual efficacy of hormonal therapy using classical molecular biomarkers such as ER and PgR. However, approximately one-third of ERα-positive patients do not respond to endocrine therapy, while some ERα-negative patients are responsive. These discrepancies may be due to the different estrogen-related intracellular signaling pathways in breast cancer cells. Furthermore, the ineffectiveness of hormonal therapy in some individuals (due to, for example, aromatase inhibitor resistance) may be caused by these mechanisms. In this paper, we discuss the molecular mechanisms of these different responses to hormonal therapies and their implications for the estrogen signaling pathway in breast cancer cells. Furthermore, we touch upon basic studies into predicting the efficacy of hormonal therapy and new strategies in this field.


Estrogen Hormonal therapy SERM Aromatase Phosphorylation 


  1. 1.
    Hayashi S, Eguchi H, Tanimoto K, Yoshida T, Omoto Y, Inoue A, et al. The expression and function of estrogen receptor α and β in human breast cancer and its clinical application. Endocr Relat Cancer. 2003;10:193–202.PubMedCrossRefGoogle Scholar
  2. 2.
    Levin ER. Integration of the extranuclear and nuclear actions of estrogen. Mol Endocrinol. 2005;19:1951–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Björnström L, Sjöberg M. Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol. 2005;19:833–42.PubMedCrossRefGoogle Scholar
  4. 4.
    Norman AW, Mizwicki MT, Norman DP. Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat Rev. 2004;3:27–41.Google Scholar
  5. 5.
    Osborne CK, Shou J, Massarweh S, Schiff R. Crosstalk between estrogen receptor and growth factor receptor pathways as a cause for endocrine therapy resistance in breast cancer. Clin Cancer Res. 2005;11:865s–70s.PubMedGoogle Scholar
  6. 6.
    Le Goff P, Montano MM, Schodin DJ, Katzenellenbogen BS. Phosphorylation of the human estrogen receptor. Identification of hormone-regulated sites and examination of their influence on transcriptional activity. J Biol Chem. 1994;269:4458–66.PubMedGoogle Scholar
  7. 7.
    Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, et al. Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase. Science. 1995;270:1491–4.PubMedCrossRefGoogle Scholar
  8. 8.
    Smith CL, O’Malley BW. Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev. 2004;25:45–71.PubMedCrossRefGoogle Scholar
  9. 9.
    Anzick SL, Kononen J, Walker RL, Azorsa DO, Tanner MM, Guan XY, et al. AIB1, a steroid receptor coactivtor amplified in breast and ovarian cancer. Science. 1997;277:965–8.PubMedCrossRefGoogle Scholar
  10. 10.
    Brown AMC, Jeltsch JM, Roberts M, Chambon P. Activation of pS2 gene transcription is a primary response to estrogen in the human breast cancer cell line MCF-7. Proc Natl Acad Sci USA. 1984;81:6344–8.PubMedCrossRefGoogle Scholar
  11. 11.
    Westley B and Rochefort H. A secreted glycoprotein induced by estrogen in human breast cancer cell lines. Cell. 1980;20:353–62.CrossRefGoogle Scholar
  12. 12.
    Inoue S, Orimo A, Hosoi T, et al. Genomic binding-site cloning reveals an estrogen-responsive gene that encodes a RING finger protein. Proc Natl Acad Sci USA. 1993;90:11117–21.PubMedCrossRefGoogle Scholar
  13. 13.
    Inoue A, Omoto Y, Yamaguchi Y, Kiyama R, Hayashi S. Transcription factor EGR3 is involved in the estrogen-signaling pathway in breast cancer cell. J Mol Endocrinol. 2004;32:649–61.PubMedCrossRefGoogle Scholar
  14. 14.
    Liu MM, Albanese C, Anderson CM, Hilty K, Webb P, Uht RM, et al. Opposing action of estrogen receptors alpha and beta on cyclin D1 gene expression. J Biol Chem. 2002;277:24353–60.PubMedCrossRefGoogle Scholar
  15. 15.
    Bruning JC, Lingohr P, Gillette J, Hanstein B, Avci H, Krone W, et al. Estrogen receptor-alpha and Sp1 interact in the induction of the low density lipoprotein-receptor. J Steroid Biochem Mol Biol. 2003;86:113–21.PubMedCrossRefGoogle Scholar
  16. 16.
    Kalaitzidis D, Gilmore TD. Transcription factor cross-talk: the estrogen receptor and NF-kappaB. Trends Endocrinol Metab. 2005;16:46–52.PubMedCrossRefGoogle Scholar
  17. 17.
    Kato S, Masuhiro Y, Watanabe M, Kobayashi Y, Takeyama K, Endoh H, et al. Molecular mechanism of a cross-talk between oestrogen and growth factor signalling pathways. Genes Cells. 2000;5:593–601.PubMedCrossRefGoogle Scholar
  18. 18.
    Bunone G, Briand P-A, Miksicek RJ, Picard D. Activation of the unliganded estrogen receptor by EGF involves the MAP kinase pathway and direct phosphorylation. EMBO J. 1996;15:2174–83.PubMedGoogle Scholar
  19. 19.
    Amold SF, Obourn JD, Jaffe H, Notides AC. Ser 167 is the major estradiol-induced phosphorylation site on the human estrogen receptor. Mol Endocrinol. 1994;8:1208–14.CrossRefGoogle Scholar
  20. 20.
    Joel PB, Smith J, Sturgill TW, Fisher TL, Blenis J, Lannigan DA. pp90srk1 regulates estrogen receptor-mediated transcription through phosphorylation of Ser-167. Mol Cell Biol. 1998;18:1978–84.PubMedGoogle Scholar
  21. 21.
    Rowan BG, Weigel NL, O’Malley BW. Phosphorylation of steroid receptor coactivator-1: indentification of the phosphorylation sites and phosphorylation through the mitogen-activated protein kinase pathway. J Biol Chem. 2000;275:4475–83.PubMedCrossRefGoogle Scholar
  22. 22.
    Mora J, Brown M. AIB1 is a conduit for kinase-mediated growth factor signaling to the estrogen receptor. Mol Cell Biol. 2000;20:5041–7.CrossRefGoogle Scholar
  23. 23.
    Yamashita H, Nishino M, Kobayashi S, Ando Y, Sugiura H, Zhang Z, et al. Phosphorylation of estrogen receptor α serine 167 is predictive of response to endocrine therapy and increases postrelapse survival in metastatic breast cancer. Breast Cancer Res. 2005;7:753–64.CrossRefGoogle Scholar
  24. 24.
    Razandi M, Pedram A, Greene GL, Levin ER. Cell membrane and nuclear estrogen receptors (ERs) originate from a single transcript: studies of ERα and ERβ expressed in Chinese hamster ovary cells. Mol Endocrinol. 1999;13:307–19.PubMedCrossRefGoogle Scholar
  25. 25.
    Harrington WR, Kim SH, Funk CC, Madak-Erdogan Z, Schiff R, Katzenellenbogen JA, et al. Estrogen dendrimer conjugates that preferentially activate extranuclear, nongenomic versus genomic pathways of estrogen action. Mol Endocrinol. 2005;20:491–502.PubMedCrossRefGoogle Scholar
  26. 26.
    Song RX, Barnes CJ, Zhang Z, Bao Y, Kumar R, Santen RJ. The role of Shc and insulin-like growth factor 1 receptor in mediating the translocation of estrogen receptor α to the plasma membrane. Proc Natl Acad Sci USA. 2004;101:2076–81.PubMedCrossRefGoogle Scholar
  27. 27.
    Thomas P, Pang Y, Filardo EJ, Dong J. Identity of an estrogen membrane receptor coupled to a G protein in human breast cancer cell. Endocrinol. 2004;146:624–32.CrossRefGoogle Scholar
  28. 28.
    Maggiolini M, Vivacqua A, Fasanella G, Recchia AG, Sisci D, Pezzi V, et al. The G protein-coupled receptor GPR30 mediates c-fos up-regulation by 17β-estradiol and phytoestrogens in breast cancer cells. J Biol Chem. 2004;279:27008–16.PubMedCrossRefGoogle Scholar
  29. 29.
    Pedram A, Razandi M, Levin ER. Nature of functional estrogen receptors at the plasma membrane. Mol Endocrinol. 2006;20:1996–2009.PubMedCrossRefGoogle Scholar
  30. 30.
    Razandi M, Oh P, Pedram A, Schnitzer J, Levin ER. ERs associate with and regulate the production of caveolin: implications for signaling and cellular actions. Mol Endocrinol. 2002;16:100–15.PubMedCrossRefGoogle Scholar
  31. 31.
    Barletta F, Wong CW, McNally C, Komm BS, Katzenellenbogen B, Cheskis BJ. Characterization of the interactions of estrogen receptor and MNAR in the activation of cSrc. Mol Endocrinol. 2004;18:1096–108.PubMedCrossRefGoogle Scholar
  32. 32.
    Acconcia F, Kumar R. Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett. 2005;238:1–14.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar R, Wang RA, Mazumdar A, Talukder AH, Mandal M, Yang Z, et al. A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature. 2002;418:654–7.PubMedCrossRefGoogle Scholar
  34. 34.
    Yang Z, Barnes CJ, Kumar R. Human epidermal growth factor receptor 2 status modulates subcellular localization of and interaction with estrogen receptor α in breast cancer cells. Clin Cancer Res. 2004;10:3621–8.PubMedCrossRefGoogle Scholar
  35. 35.
    Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang AH, et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell. 2004;6:17–32.PubMedCrossRefGoogle Scholar
  36. 36.
    Orimo A, Gupta PB, Sgroi DC, Arenzana-Seisdedos F, Delaunay T, Naeem R, et al. Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell. 2005;121:335–48.PubMedCrossRefGoogle Scholar
  37. 37.
    Kalluri R, Zeisberg M. Fibroblasts in cancer. Nat Rev Cancer. 2006;6:392–401.PubMedCrossRefGoogle Scholar
  38. 38.
    O’Neill JS, Miller WR. Aromatase activity in breast adipose tissue from women with benign and malignant breast disease. Br J Cancer. 1987;56:601–4.PubMedGoogle Scholar
  39. 39.
    Santen RJ, Santner SJ, Pauley RJ, Tait L, Kaseta J, Demers LM, et al. Estrogen production via the aromatase enzyme in breast carcinoma: which cell type is responsible? J Steroid Biochem Mol Biol. 1997;61:267–71.PubMedCrossRefGoogle Scholar
  40. 40.
    Simpson ER, Davis SR. Minireview: aromatase and the regulation of estrogen biosynthesis-some new perspectives. Endocrinology. 2001;142:4589–94.PubMedCrossRefGoogle Scholar
  41. 41.
    Howell A, Cuzick J, Baum M, Buzdar A, Dowsett M, Forbes JF, et al. ATAC Trialists’ Group. Results of the ATAC (Arimidex, Tamoxifen, Alone or in Combination) trial after completion of 5 years’ adjuvant treatment for breast cancer. Lancet. 2005;365:60–2.PubMedCrossRefGoogle Scholar
  42. 42.
    Yamaguchi Y, Takei H, Suemasu K, Kobayashi Y, Kurosumi M, Harada N, et al. Tumor–stromal interaction through the estrogen-signaling pathway in human breast cancer. Cancer Res. 2005;65:4653–62.PubMedCrossRefGoogle Scholar
  43. 43.
    Inoue A, Yoshida N, Omoto Y, Oguchi S, Yamori T, Kiyama R, et al. Development of cDNA microarray for expression profiling of estrogen-responsive genes. J Mol Endocrinol. 2002;29:175–92.PubMedCrossRefGoogle Scholar
  44. 44.
    Yoshida N, Omoto Y, Inoue A, Eguchi H, Kobayashi Y, Kurosumi M, et al. Prediction of prognosis of estrogen receptor-positive breast cancer with combination of selected estrogen-regulated genes. Cancer Sci. 2004;95:496–502.PubMedCrossRefGoogle Scholar
  45. 45.
    Harvell DME, Spoelstra NS, Singh M, McManaman JL, Finlayson C, Phang T, Hunter L, Dye WW, Borges VF, Elias A, Horwitz KB, Richer JK. Molecular signatures of neoadjuvant endocrine therapy for breast cancer: characteristics of response or intrinsic resistance. Breast Cancer Res Treat. 2008; in press.Google Scholar

Copyright information

© The Japanese Breast Cancer Society 2008

Authors and Affiliations

  1. 1.Department of Molecular and Functional Dynamics, Laboratory Medicine and SciencesTohoku University Graduate School of MedicineSendaiJapan
  2. 2.Research Institute for Clinical OncologySaitama Cancer CenterSaitamaJapan

Personalised recommendations