Advertisement

Applying Pharmacogenomics to Antifungal Selection and Dosing: Are We There Yet?

Abstract

Purpose of Review

This review summarizes recent literature for applying pharmacogenomics to antifungal selection and dosing, providing an approach to implementing antifungal pharmacogenomics in clinical practice.

Recent Findings

The Clinical Pharmacogenetics Implementation Consortium published guidelines on CYP2C19 and voriconazole, with recommendations to use alternative antifungals or adjust voriconazole dose with close therapeutic drug monitoring (TDM). Recent studies demonstrate an association between CYP2C19 phenotype and voriconazole levels, clinical outcomes, and adverse events. Additionally, CYP2C19-guided preemptive dose adjustment demonstrated benefit in two prospective studies for prophylaxis. Pharmacokinetic–pharmacodynamic modeling studies have generated proposed voriconazole treatment doses based on CYP2C19 phenotypes, with further validation studies needed.

Summary

Sufficient evidence is available for implementing CYP2C19-guided voriconazole selection and dosing among select patients at risk for invasive fungal infections. The institution needs appropriate infrastructure for pharmacogenomic testing, integration of results in the clinical decision process, with TDM confirmation of goal trough achievement, to integrate antifungal pharmacogenomics into routine clinical care.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    Webb BJ, Ferraro JP, Rea S, Kaufusi S, Goodman BE, Spalding J. Epidemiology and Clinical Features of Invasive Fungal Infection in a US health care network. Open Forum Infect Dis. 2018;5(8):ofy187. https://doi.org/10.1093/ofid/ofy187.

  2. 2.

    Evans WE, McLeod HL. Pharmacogenomics--drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49. https://doi.org/10.1056/NEJMra020526.

  3. 3.

    Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–17. https://doi.org/10.4065/mcp.2011.0247.

  4. 4.

    Ashbee HR, Barnes RA, Johnson EM, Richardson MD, Gorton R, Hope WW. Therapeutic drug monitoring (TDM) of antifungal agents: guidelines from the British Society for Medical Mycology. J Antimicrob Chemother. 2014;69(5):1162–76. https://doi.org/10.1093/jac/dkt508.

  5. 5.

    Buil JB, Bruggemann RJM, Wasmann RE, Zoll J, Meis JF, Melchers WJG, et al. Isavuconazole susceptibility of clinical Aspergillus fumigatus isolates and feasibility of isavuconazole dose escalation to treat isolates with elevated MICs. J Antimicrob Chemother. 2018;73(1):134–42. https://doi.org/10.1093/jac/dkx354.

  6. 6.

    Lepak AJ, Marchillo K, Vanhecker J, Andes DR. Isavuconazole (BAL4815) pharmacodynamic target determination in an in vivo murine model of invasive pulmonary aspergillosis against wild-type and cyp51 mutant isolates of Aspergillus fumigatus. Antimicrob Agents Chemother. 2013;57(12):6284–9. https://doi.org/10.1128/AAC.01355-13.

  7. 7.

    Ketoconazole [package insert], Morgantown, WV: Mylan Pharmaceuticals Inc.; 2018.

  8. 8.

    Diflucan (Fluconazole) [package insert], NY, NY: Pfizer Inc,; 2019.

  9. 9.

    Tolsura (itraconazole) [package insert]. Greenville, NC: Mayne Pharma Inc.; 2019.

  10. 10.

    Sporanox (itraconazole) [package insert]. Titusville, NJ: Janssen Pharmaceutical Companies; 2019.

  11. 11.

    Vfend (voriconazole) [package insert]. NY, NY: Pfizer Inc.; 2019.

  12. 12.

    Posaconazole [package insert]. Chestnut Ridge, NY: Par Pharmaceutical.; 2019.

  13. 13.

    Isavuconazonium sulfate [package insert], Northbrook, IL: Astellas Pharma US; 2018.

  14. 14.

    •• Amsden JR, Gubbins PO. Pharmacogenomics of triazole antifungal agents: implications for safety, tolerability and efficacy. Expert Opin Drug Metab Toxicol. 2017;13(11):1135–46. https://doi.org/10.1080/17425255.2017.1391213. A review of the impact of CYP450 enzymes on the different azoles.

  15. 15.

    Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, et al. CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol. 2009;49(2):196–204. https://doi.org/10.1177/0091270008327537.

  16. 16.

    Shao B, Ma Y, Li Q, Wang Y, Zhu Z, Zhao H, et al. Effects of cytochrome P450 3A4 and non-genetic factors on initial voriconazole serum trough concentrations in hematological patients with different cytochrome P450 2C19 genotypes. Xenobiotica. 2017;47(12):1121–9. https://doi.org/10.1080/00498254.2016.1271960.

  17. 17.

    •• Moriyama B, Obeng AO, Barbarino J, Penzak SR, Henning SA, Scott SA, et al. Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for CYP2C19 and voriconazole therapy. Clin Pharmacol Ther. 2017;102(1):45–51. Doi: 1002/cpt.583. This shows the pharmacogenetic guidelines for CYP2C19-voriconazole.

  18. 18.

    PharmGKB [Available from: https://www.pharmgkb.org/].

  19. 19.

    Klein TE, Chang JT, Cho MK, Easton KL, Fergerson R, Hewett M, et al. Integrating genotype and phenotype information: an overview of the PharmGKB project. Pharmacogenetics Research Network and Knowledge Base. Pharm J. 2001;1(3):167–70. https://doi.org/10.1038/sj.tpj.6500035.

  20. 20.

    Relling MV, Klein TE, Gammal RS, Whirl-Carrillo M, Hoffman JM, Caudle KE. The clinical pharmacogenetics implementation consortium: 10 years later. Clin Pharmacol Ther. 2019. https://doi.org/10.1002/cpt.1651.

  21. 21.

    Tomblyn M, Chiller T, Einsele H, Gress R, Sepkowitz K, Storek J, et al. Guidelines for preventing infectious complications among hematopoietic cell transplantation recipients: a global perspective. Biol Blood Marrow Transplant. 2009;15(10):1143–238. https://doi.org/10.1016/j.bbmt.2009.06.019.

  22. 22.

    • Barbarino JM, Owusu Obeng A, Klein TE, Altman RB. PharmGKB summary: voriconazole pathway, pharmacokinetics. Pharmacogenet Genomics. 2017;27(5):201–9. https://doi.org/10.1097/FPC.0000000000000276. The PharmGKB summary of voriconazole.

  23. 23.

    Owusu Obeng A, Egelund EF, Alsultan A, Peloquin CA, Johnson JA. CYP2C19 polymorphisms and therapeutic drug monitoring of voriconazole: are we ready for clinical implementation of pharmacogenomics? Pharmacotherapy. 2014;34(7):703–18. https://doi.org/10.1002/phar.1400.

  24. 24.

    Mangal N, Hamadeh IS, Arwood MJ, Cavallari LH, Samant TS, Klinker KP, et al. Optimization of voriconazole therapy for the treatment of invasive fungal infections in adults. Clin Pharmacol Ther. 2018;104(5):957–65. https://doi.org/10.1002/cpt.1012.

  25. 25.

    Levine MT, Chandrasekar PH. Adverse effects of voriconazole: over a decade of use. Clin Transpl. 2016;30(11):1377–86. https://doi.org/10.1111/ctr.12834.

  26. 26

    Moriyama B, Kadri S, Henning SA, Danner RL, Walsh TJ, Penzak SR. Therapeutic drug monitoring and genotypic screening in the clinical use of voriconazole. Curr Fungal Infect Rep. 2015;9(2):74–87. https://doi.org/10.1007/s12281-015-0219-0.

  27. 27.

    Weigel JD, Hunfeld NG, Koch BC, Egal M, Bakker J, van Schaik RH, et al. Gain-of-function single nucleotide variants of the CYP2C19 gene (CYP2C19*17) can identify subtherapeutic voriconazole concentrations in critically ill patients: a case series. Intensive Care Med. 2015;41(11):2013–4. https://doi.org/10.1007/s00134-015-4002-z.

  28. 28.

    Gautier-Veyret E, Bailly S, Fonrose X, Tonini J, Chevalier S, Thiebaut-Bertrand A, et al. Pharmacogenetics may influence the impact of inflammation on voriconazole trough concentrations. Pharmacogenomics. 2017;18(12):1119–23. https://doi.org/10.2217/pgs-2017-0054.

  29. 29.

    Lamoureux F, Duflot T, Woillard JB, Metsu D, Pereira T, Compagnon P, et al. Impact of CYP2C19 genetic polymorphisms on voriconazole dosing and exposure in adult patients with invasive fungal infections. Int J Antimicrob Agents. 2016;47(2):124–31. https://doi.org/10.1016/j.ijantimicag.2015.12.003.

  30. 30.

    Hicks JK, Gonzalez BE, Zembillas AS, Kusick K, Murthy S, Raja S, et al. Invasive Aspergillus infection requiring lobectomy in a CYP2C19 rapid metabolizer with subtherapeutic voriconazole concentrations. Pharmacogenomics. 2016;17(7):663–7. https://doi.org/10.2217/pgs-2015-0014.

  31. 31.

    Chuwongwattana S, Jantararoungtong T, Chitasombat MN, Puangpetch A, Prommas S, Dilokpattanamongkol P, et al. A prospective observational study of CYP2C19 polymorphisms and voriconazole plasma level in adult Thai patients with invasive aspergillosis. Drug Metab Pharmacokinet. 2016;31(2):117–22. https://doi.org/10.1016/j.dmpk.2015.12.005.

  32. 32.

    Niioka T, Fujishima N, Abumiya M, Yamashita T, Ubukawa K, Nara M, et al. Relationship between the CYP2C19 phenotype using the voriconazole-to-voriconazole N-oxide plasma concentration ratio and demographic and clinical characteristics of Japanese patients with different CYP2C19 genotypes. Ther Drug Monit. 2017;39(5):514–21. https://doi.org/10.1097/FTD.0000000000000441.

  33. 33.

    Hamadeh IS, Klinker KP, Borgert SJ, Richards AI, Li W, Mangal N, et al. Impact of the CYP2C19 genotype on voriconazole exposure in adults with invasive fungal infections. Pharmacogenet Genomics. 2017;27(5):190–6. https://doi.org/10.1097/FPC.0000000000000277.

  34. 34.

    Ebrahimpour S, Namazi S, Mohammadi M, Nikbakht M, Hadjibabaie M, Masoumi HT, et al. Impact of CYP2C19 polymorphisms on serum concentration of voriconazole in Iranian hematological patients. J Res Pharm Pract. 2017;6(3):151–7. https://doi.org/10.4103/jrpp.JRPP_17_31.

  35. 35.

    You H, Dong Y, Zou Y, Zhang T, Lei J, Chen L, et al. Voriconazole therapeutic drug monitoring: factors associated with supratherapeutic and subtherapeutic voriconazole concentrations. Int J Clin Pharmacol Ther. 2018;56(5):239–46. https://doi.org/10.5414/CP203184.

  36. 36.

    Miao Q, Tang JT, van Gelder T, Li YM, Bai YJ, Zou YG, et al. Correlation of CYP2C19 genotype with plasma voriconazole exposure in South-western Chinese Han patients with invasive fungal infections. Medicine (Baltimore). 2019;98(3):e14137. https://doi.org/10.1097/MD.0000000000014137.

  37. 37.

    Wang T, Zhu H, Sun J, Cheng X, Xie J, Dong H, et al. Efficacy and safety of voriconazole and CYP2C19 polymorphism for optimised dosage regimens in patients with invasive fungal infections. Int J Antimicrob Agents. 2014;44(5):436–42. https://doi.org/10.1016/j.ijantimicag.2014.07.013.

  38. 38.

    Trubiano JA, Crowe A, Worth LJ, Thursky KA, Slavin MA. Putting CYP2C19 genotyping to the test: utility of pharmacogenomic evaluation in a voriconazole-treated haematology cohort. J Antimicrob Chemother. 2015;70(4):1161–5. https://doi.org/10.1093/jac/dku529.

  39. 39.

    Beata S, Donata UK, Jaroslaw D, Tomasz W, Anna WH. Influence of CYP2C19*2/*17 genotype on adverse drug reactions of voriconazole in patients after allo-HSCT: a four-case report. J Cancer Res Clin Oncol. 2017;143(6):1103–6. https://doi.org/10.1007/s00432-017-2357-y.

  40. 40.

    Danion F, Jullien V, Rouzaud C, Abdel Fattah M, Lapusan S, Guery R, et al. Is it time for systematic voriconazole pharmacogenomic investigation for central nervous system aspergillosis. Antimicrob Agents Chemother. 2018;62(9). https://doi.org/10.1128/AAC.00705-18.

  41. 41.

    Lin XB, Li ZW, Yan M, Zhang BK, Liang W, Wang F, et al. Population pharmacokinetics of voriconazole and CYP2C19 polymorphisms for optimizing dosing regimens in renal transplant recipients. Br J Clin Pharmacol. 2018;84(7):1587–97. https://doi.org/10.1111/bcp.13595.

  42. 42.

    Kim Y, Rhee SJ, Park WB, Yu KS, Jang IJ, Lee S. A Personalized CYP2C19 phenotype-guided dosing regimen of voriconazole using a population pharmacokinetic analysis. J Clin Med. 2019;8(2). https://doi.org/10.3390/jcm8020227.

  43. 43.

    Teusink A, Vinks A, Zhang K, Davies S, Fukuda T, Lane A, et al. Genotype-directed dosing leads to optimized voriconazole levels in pediatric patients receiving hematopoietic stem cell transplantation. Biol Blood Marrow Transplant. 2016;22(3):482–6. https://doi.org/10.1016/j.bbmt.2015.11.011.

  44. 44.

    Fulco PP, Beaulieu C, Higginson RT, Bearman G. Pharmacogenetic testing for the treatment of aspergillosis with voriconazole in two HIV-positive patients. Pharmacogenet Genomics. 2019;29(6):155–7. https://doi.org/10.1097/FPC.0000000000000377.

  45. 45.

    • Patel JN, Hamadeh IS, Robinson M, Shahid Z, Symanowski J, Steuerwald N, et al. Evaluation of CYP2C19 genotype-guided voriconazole prophylaxis after allogeneic hematopoietic cell transplant. Clin Pharmacol Ther. 2019. https://doi.org/10.1002/cpt.1642. A prospective study comparing CYP2C19-guided versus standard voriconazole prophylactic dosing in allogeneic hematopoietic cell transplant patients.

  46. 46.

    • Hicks JK, Quilitz RE, Komrokji RS, Kubal TE, Lancet JE, Pasikhova Y, et al. Prospective CYP2C19-guided voriconazole prophylaxis in patients with neutropenic acute myeloid leukemia reduces the incidence of subtherapeutic antifungal plasma concentrations. Clin Pharmacol Ther. 2019. https://doi.org/10.1002/cpt.1641. A prospective study comparing CYP2C19-guided versus standard voriconazole prophylactic dosing in acute myeloid leukemia patients.

  47. 47.

    Pratt VM, Del Tredici AL, Hachad H, Ji Y, Kalman LV, Scott SA, et al. Recommendations for clinical CYP2C19 genotyping allele selection: a report of the association for molecular pathology. J Mol Diagn. 2018;20(3):269–76. https://doi.org/10.1016/j.jmoldx.2018.01.011.

  48. 48.

    Rubinstein WS, Maglott DR, Lee JM, Kattman BL, Malheiro AJ, Ovetsky M, et al. The NIH genetic testing registry: a new, centralized database of genetic tests to enable access to comprehensive information and improve transparency. Nucleic Acids Res. 2013;41(Database issue):D925–35. https://doi.org/10.1093/nar/gks1173.

  49. 49.

    Vo TT, Bell GC, Owusu Obeng A, Hicks JK, Dunnenberger HM. Pharmacogenomics implementation: considerations for selecting a reference laboratory. Pharmacotherapy. 2017;37(9):1014–22. https://doi.org/10.1002/phar.1985.

  50. 50.

    Caraballo PJ, Bielinski SJ, St Sauver JL, Weinshilboum RM. Electronic medical record-integrated pharmacogenomics and related clinical decision support concepts. Clin Pharmacol Ther. 2017;102(2):254–64. https://doi.org/10.1002/cpt.707.

  51. 51.

    Hicks JK, Dunnenberger HM, Gumpper KF, Haidar CE, Hoffman JM. Integrating pharmacogenomics into electronic health records with clinical decision support. Am J Health Syst Pharm. 2016;73(23):1967–76. https://doi.org/10.2146/ajhp160030.

  52. 52.

    Klein ME, Parvez MM, Shin JG. Clinical implementation of pharmacogenomics for personalized precision medicine: barriers and solutions. J Pharm Sci. 2017;106(9):2368–79. https://doi.org/10.1016/j.xphs.2017.04.051.

  53. 53.

    Rouzaud C, Jullien V, Herbrecht A, Palmier B, Lapusan S, Morgand M, et al. Isavuconazole diffusion in infected human brain. Antimicrob Agents Chemother. 2019;63(10). https://doi.org/10.1128/AAC.02474-18.

  54. 54.

    Schwartz S, Cornely OA, Hamed K, Marty FM, Maertens J, Rahav G, et al. Isavuconazole for the treatment of patients with invasive fungal diseases involving the central nervous system. Med Mycol. 2019. https://doi.org/10.1093/mmy/myz103.

  55. 55.

    Williams K, Arron ST. Association of CYP2C19 *17/*17 genotype with the risk of voriconazole-associated squamous cell carcinoma. JAMA Dermatol. 2016;152(6):719–20. https://doi.org/10.1001/jamadermatol.2016.0351.

  56. 56.

    Zhu L, Bruggemann RJ, Uy J, Colbers A, Hruska MW, Chung E, et al. CYP2C19 genotype-dependent pharmacokinetic drug interaction between voriconazole and ritonavir-boosted atazanavir in healthy subjects. J Clin Pharmacol. 2017;57(2):235–46. https://doi.org/10.1002/jcph.798.

  57. 57.

    Owusu Obeng A, Fei K, Levy KD, Elsey AR, Pollin TI, Ramirez AH, et al. Physician-reported benefits and barriers to clinical implementation of genomic medicine: a multi-site IGNITE-network survey. J Pers Med. 2018;8(3). https://doi.org/10.3390/jpm8030024.

  58. 58.

    Sperber NR, Carpenter JS, Cavallari LH, LJ Damschroder, Cooper-DeHoff RM, Denny JC, et al. Challenges and strategies for implementing genomic services in diverse settings: experiences from the Implementing GeNomics In pracTicE (IGNITE) network. BMC Med Genet. 2017;10(1):35. Doi:https://doi.org/10.1186/s12920-017-0273-2.

  59. 59.

    Luzum JA, Pakyz RE, Elsey AR, Haidar CE, Peterson JF, Whirl-Carrillo M, et al. The pharmacogenomics research network translational pharmacogenetics program: outcomes and metrics of pharmacogenetic implementations across diverse healthcare systems. Clin Pharmacol Ther. 2017;102(3):502–10. https://doi.org/10.1002/cpt.630.

  60. 60.

    Dapia I, Garcia I, Martinez JC, Arias P, Guerra P, Diaz L, et al. Prediction models for voriconazole pharmacokinetics based on pharmacogenetics: an exploratory study in a Spanish population. Int J Antimicrob Agents. 2019;54(4):463–70. https://doi.org/10.1016/j.ijantimicag.2019.06.026.

  61. 61.

    Shah RR, Smith RL. Inflammation-induced phenoconversion of polymorphic drug metabolizing enzymes: hypothesis with implications for personalized medicine. Drug Metab Dispos. 2015;43(3):400–10. https://doi.org/10.1124/dmd.114.061093.

  62. 62.

    Veringa A, Ter Avest M, Span LF, van den Heuvel ER, Touw DJ, Zijlstra JG, et al. Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother. 2017;72(1):261–7. https://doi.org/10.1093/jac/dkw349.

Download references

Author information

Correspondence to Yee Ming Lee.

Ethics declarations

Conflict of Interest

Matthew A. Miller reports personal fees from Allergan outside the submitted work. Yee Ming Lee reports personal fees from Dynamed Plus (EBSCO Health) outside the submitted work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pharmacology and Pharmacodynamics of Antifungal Agents

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Miller, M.A., Lee, Y.M. Applying Pharmacogenomics to Antifungal Selection and Dosing: Are We There Yet?. Curr Fungal Infect Rep (2020). https://doi.org/10.1007/s12281-020-00371-w

Download citation

Keywords

  • Invasive fungal disease
  • Antifungal
  • Pharmacogenomics
  • Dosing
  • Voriconazole
  • CYP2C19