Advertisement

Updates on the Treatment of Non-Aspergillus Hyaline Mold Infections

  • Saman NematollahiEmail author
  • Shmuel Shoham
Current Management of Fungal Infections (S Jacobs, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Current Management of Fungal Infections

Abstract

Purpose of Review

This review summarizes both the recent and relevant studies about the treatment of non-Aspergillus hyaline molds.

Recent Findings

Given the rarity of these infections, there have been no large randomized clinical trials regarding the most effective antifungal therapy.

Summary

Although there are more data for the treatment of Fusarium and Scedosporium, there are limited data with case reports that address the other rare hyalohyphomycetes. As we develop improved diagnostic techniques and larger fungal registries, we may be able to determine efficacious treatment modalities. We hope that future research will focus on implementing clinical trials with the new antifungals and ongoing development of novel fungal agents.

Keywords

Hyaline molds Hyalohyphomycetes Emerging fungal infections Antifungal therapy Fusarium Scedosporium 

Notes

Compliance with Ethical Standards

Conflict of Interest

Shmuel Shoham reports grants from Merck, grants from Astellas, grants from Shire, grants from Scynexis, grants from F2G, grants from Cidara, grants from Gilead, personal fees from Jannssen, grants from Johnson and Johnson, and grants from Ansun outside the submitted work. Saman Nematollahi declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Ambrosioni J, Bouchuiguir-Wafa K, Garbino J. Emerging invasive zygomycosis in a tertiary care center: epidemiology and associated risk factors. Int J Infect Dis. 2010;14(Suppl 3):e100–3.  https://doi.org/10.1016/j.ijid.2009.11.024.CrossRefPubMedGoogle Scholar
  2. 2.
    Douglas AP, Chen SC, Slavin MA. Emerging infections caused by non-Aspergillus filamentous fungi. Clin Microbiol Infect. 2016;22(8):670–80.  https://doi.org/10.1016/j.cmi.2016.01.011.CrossRefPubMedGoogle Scholar
  3. 3.
    Pappas PG, Alexander BD, Andes DR, Hadley S, Kauffman CA, Freifeld A, et al. Invasive fungal infections among organ transplant recipients: results of the Transplant-Associated Infection Surveillance Network (TRANSNET). Clin Infect Dis. 2010;50(8):1101–11.  https://doi.org/10.1086/651262.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Park BJ, Pappas PG, Wannemuehler KA, Alexander BD, Anaissie EJ, Andes DR, et al. Invasive non-Aspergillus mold infections in transplant recipients, United States, 2001-2006. Emerg Infect Dis. 2011;17(10):1855–64.  https://doi.org/10.3201/eid1710.110087.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Slavin M, van Hal S, Sorrell TC, Lee A, Marriott DJ, Daveson K, et al. Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect. 2015;21(5):490 e1–10.  https://doi.org/10.1016/j.cmi.2014.12.021.CrossRefGoogle Scholar
  6. 6.
    O'Donnell K, Sutton DA, Rinaldi MG, Sarver BA, Balajee SA, Schroers HJ, et al. Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol. 2010;48(10):3708–18.  https://doi.org/10.1128/JCM.00989-10.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Arif S, Perfect JR. Emergence of the molds other than Aspergillus in immunocompromised patients. Clin Chest Med. 2017;38(3):555–73.  https://doi.org/10.1016/j.ccm.2017.04.014.CrossRefPubMedGoogle Scholar
  8. 8.
    Gomez CA, Budvytiene I, Zemek AJ, Banaei N. Performance of targeted fungal sequencing for culture-independent diagnosis of invasive fungal disease. Clin Infect Dis. 2017;65(12):2035–41.  https://doi.org/10.1093/cid/cix728.CrossRefPubMedGoogle Scholar
  9. 9.
    Sanguinetti M, Posteraro B. Identification of molds by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2017;55(2):369–79.  https://doi.org/10.1128/JCM.01640-16.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Nucci M, Barreiros G, Reis H, Paixao M, Akiti T, Nouer SA. Performance of 1,3-beta-D-glucan in the diagnosis and monitoring of invasive fusariosis. Mycoses. 2019;62(7):570–5.  https://doi.org/10.1111/myc.12918.CrossRefPubMedGoogle Scholar
  11. 11.
    Nucci M, Carlesse F, Cappellano P, Varon AG, Seber A, Garnica M, et al. Earlier diagnosis of invasive fusariosis with Aspergillus serum galactomannan testing. PLoS One. 2014;9(1):e87784.  https://doi.org/10.1371/journal.pone.0087784.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Ostrosky-Zeichner L, Alexander BD, Kett DH, Vazquez J, Pappas PG, Saeki F, et al. Multicenter clinical evaluation of the (1-- > 3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41(5):654–9.  https://doi.org/10.1086/432470.CrossRefPubMedGoogle Scholar
  13. 13.
    Tortorano AM, Esposto MC, Prigitano A, Grancini A, Ossi C, Cavanna C, et al. Cross-reactivity of Fusarium spp. in the Aspergillus Galactomannan enzyme-linked immunosorbent assay. J Clin Microbiol. 2012;50(3):1051–3.  https://doi.org/10.1128/JCM.05946-11.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Chen M, Zeng J, De Hoog GS, Stielow B. Gerrits Van Den Ende AH, Liao W et al. The 'species complex' issue in clinically relevant fungi: a case study in Scedosporium apiospermum. Fungal Biol. 2016;120(2):137–46.  https://doi.org/10.1016/j.funbio.2015.09.003.CrossRefPubMedGoogle Scholar
  15. 15.
    Lackner M, de Hoog GS, Yang L, Ferreira Moreno L, Ahmed SA, Andreas F, et al. Proposed nomenclature for Pseudallescheria, Scedosporium and related genera. Fungal Divers. 2014;67(1):1–10.  https://doi.org/10.1007/s13225-014-0295-4.CrossRefGoogle Scholar
  16. 16.
    • Ramirez-Garcia A, Pellon A, Rementeria A, Buldain I, Barreto-Bergter E, Rollin-Pinheiro R, et al. Scedosporium and Lomentospora: an updated overview of underrated opportunists. Med Mycol. 2018;56(suppl_1):102–25.  https://doi.org/10.1093/mmy/myx113Excellent review of Scedosporium and Lomentospora, from clinical manifestations to diagnosis and treatment. CrossRefPubMedGoogle Scholar
  17. 17.
    Grenouillet F, Botterel F, Crouzet J, Larosa F, Hicheri Y, Forel JM, et al. Scedosporium prolificans: an emerging pathogen in France? Med Mycol. 2009;47(4):343–50.  https://doi.org/10.1080/13693780802454761.CrossRefPubMedGoogle Scholar
  18. 18.
    Odabasi Z, Paetznick VL, Rodriguez JR, Chen E, McGinnis MR, Ostrosky-Zeichner L. Differences in beta-glucan levels in culture supernatants of a variety of fungi. Med Mycol. 2006;44(3):267–72.  https://doi.org/10.1080/13693780500474327.CrossRefPubMedGoogle Scholar
  19. 19.
    •• Tortorano AM, Richardson M, Roilides E, van Diepeningen A, Caira M, Munoz P, et al. ESCMID and ECMM joint guidelines on diagnosis and management of hyalohyphomycosis: Fusarium spp., Scedosporium spp. and others. Clin Microbiol Infect. 2014;20(Suppl 3):27–46.  https://doi.org/10.1111/1469-0691.124652014 European guidelines on the diagnosis and management of hyaline molds. CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    • McCarthy MW, Katragkou A, Iosifidis E, Roilides E, Walsh TJ. Recent advances in the treatment of scedosporiosis and fusariosis. J Fungi (Basel). 2018;4(2).  https://doi.org/10.3390/jof4020073Excellent review of treatment ofScedosporiumandFusarium. CrossRefGoogle Scholar
  21. 21.
    Chretien ML, Legouge C, Pages PB, Lafon I, Ferrant E, Plocque A, et al. Emergency and elective pulmonary surgical resection in haematological patients with invasive fungal infections: a report of 50 cases in a single centre. Clin Microbiol Infect. 2016;22(9):782–7.  https://doi.org/10.1016/j.cmi.2015.12.029.CrossRefPubMedGoogle Scholar
  22. 22.
    •• Blyth CC, Gilroy NM, Guy SD, Chambers ST, Cheong EY, Gottlieb T, et al. Consensus guidelines for the treatment of invasive mould infections in haematological malignancy and haemopoietic stem cell transplantation, 2014. Intern Med J. 2014;44(12b):1333–49.  https://doi.org/10.1111/imj.125982014 guidelines on the treatment of mold infections in HSCT. CrossRefPubMedGoogle Scholar
  23. 23.
    Ravikumar S, Win MS, Chai LY. Optimizing outcomes in immunocompromised hosts: understanding the role of immunotherapy in invasive fungal diseases. Front Microbiol. 2015;6:1322.  https://doi.org/10.3389/fmicb.2015.01322.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Summers SA, Dorling A, Boyle JJ, Shaunak S. Cure of disseminated cryptococcal infection in a renal allograft recipient after addition of gamma-interferon to anti-fungal therapy. Am J Transplant. 2005;5(8):2067–9.  https://doi.org/10.1111/j.1600-6143.2005.00947.x.CrossRefPubMedGoogle Scholar
  25. 25.
    Armstrong-James D, Teo IA, Shrivastava S, Petrou MA, Taube D, Dorling A, et al. Exogenous interferon-gamma immunotherapy for invasive fungal infections in kidney transplant patients. Am J Transplant. 2010;10(8):1796–803.  https://doi.org/10.1111/j.1600-6143.2010.03094.x.CrossRefPubMedGoogle Scholar
  26. 26.
    Chang KC, Burnham CA, Compton SM, Rasche DP, Mazuski RJ, McDonough JS, et al. Blockade of the negative co-stimulatory molecules PD-1 and CTLA-4 improves survival in primary and secondary fungal sepsis. Crit Care. 2013;17(3):R85.  https://doi.org/10.1186/cc12711.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Grimaldi D, Pradier O, Hotchkiss RS, Vincent JL. Nivolumab plus interferon-gamma in the treatment of intractable mucormycosis. Lancet Infect Dis. 2017;17(1):18.  https://doi.org/10.1016/S1473-3099(16)30541-2.CrossRefPubMedGoogle Scholar
  28. 28.
    Bryant AM, Slain D, Cumpston A, Craig M. A post-marketing evaluation of posaconazole plasma concentrations in neutropenic patients with haematological malignancy receiving posaconazole prophylaxis. Int J Antimicrob Agents. 2011;37(3):266–9.  https://doi.org/10.1016/j.ijantimicag.2010.11.021.CrossRefPubMedGoogle Scholar
  29. 29.
    Valenzuela R, Garcia P, Barraza M, Palma J, Catalan P, Santolaya ME, et al. Pharmacokinetics of posaconazol in the prophylaxis and treatment of invasive fungal infection in immunocompromised children in a pediatric hospital. Rev Chil Infectol. 2018;35(1):15–21.  https://doi.org/10.4067/s0716-10182018000100015.CrossRefGoogle Scholar
  30. 30.
    Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46(2):201–11.  https://doi.org/10.1086/524669.CrossRefPubMedGoogle Scholar
  31. 31.
    Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, et al. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55(3):381–90.  https://doi.org/10.1093/cid/cis437.CrossRefPubMedGoogle Scholar
  32. 32.
    Mitsani D, Nguyen MH, Shields RK, Toyoda Y, Kwak EJ, Silveira FP, et al. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother. 2012;56(5):2371–7.  https://doi.org/10.1128/AAC.05219-11.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Luong ML, Al-Dabbagh M, Groll AH, Racil Z, Nannya Y, Mitsani D, et al. Utility of voriconazole therapeutic drug monitoring: a meta-analysis. J Antimicrob Chemother. 2016;71(7):1786–99.  https://doi.org/10.1093/jac/dkw099.CrossRefPubMedGoogle Scholar
  34. 34.
    •• Shoham S, Dominguez EA. Practice ASTIDCo. Emerging fungal infections in solid organ transplant recipients: Guidelines of the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transpl. 2019:e13525.  https://doi.org/10.1111/ctr.135252019 AST ID Guidelines on emerging fungal infections in SOT.
  35. 35.
    Halliday CL, Chen SC, Kidd SE, van Hal S, Chapman B, Heath CH, et al. Antifungal susceptibilities of non-Aspergillus filamentous fungi causing invasive infection in Australia: support for current antifungal guideline recommendations. Int J Antimicrob Agents. 2016;48(4):453–8.  https://doi.org/10.1016/j.ijantimicag.2016.07.005.CrossRefPubMedGoogle Scholar
  36. 36.
    Azor M, Gene J, Cano J, Guarro J. Universal in vitro antifungal resistance of genetic clades of the Fusarium solani species complex. Antimicrob Agents Chemother. 2007;51(4):1500–3.  https://doi.org/10.1128/AAC.01618-06.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Alastruey-Izquierdo A, Cuenca-Estrella M, Monzon A, Mellado E, Rodriguez-Tudela JL. Antifungal susceptibility profile of clinical Fusarium spp. isolates identified by molecular methods. J Antimicrob Chemother. 2008;61(4):805–9.  https://doi.org/10.1093/jac/dkn022.CrossRefPubMedGoogle Scholar
  38. 38.
    Tortorano AM, Prigitano A, Dho G, Esposto MC, Gianni C, Grancini A, et al. Species distribution and in vitro antifungal susceptibility patterns of 75 clinical isolates of Fusarium spp. from northern Italy. Antimicrob Agents Chemother. 2008;52(7):2683–5.  https://doi.org/10.1128/AAC.00272-08.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lortholary O, Obenga G, Biswas P, Caillot D, Chachaty E, Bienvenu AL, et al. International retrospective analysis of 73 cases of invasive fusariosis treated with voriconazole. Antimicrob Agents Chemother. 2010;54(10):4446–50.  https://doi.org/10.1128/AAC.00286-10.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Campo M, Lewis RE, Kontoyiannis DP. Invasive fusariosis in patients with hematologic malignancies at a cancer center: 1998-2009. J Infect. 2010;60(5):331–7.  https://doi.org/10.1016/j.jinf.2010.01.010.CrossRefPubMedGoogle Scholar
  41. 41.
    Raad II, Hachem RY, Herbrecht R, Graybill JR, Hare R, Corcoran G, et al. Posaconazole as salvage treatment for invasive fusariosis in patients with underlying hematologic malignancy and other conditions. Clin Infect Dis. 2006;42(10):1398–403.  https://doi.org/10.1086/503425.CrossRefPubMedGoogle Scholar
  42. 42.
    Cornely OA, Ostrosky-Zeichner L, Rahav G, Mahar R, Zeiher B, Lee M, et al. Outcomes in patients with invasive mold disease caused by Fusarium or Scedosporium spp. treated with isavuconazole: experience from the VITAL and SECURE trials. Presented at: 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC) ASM. Washington, DC, 2014; Abstract no. M-1760.Google Scholar
  43. 43.
    Cordoba S, Rodero L, Vivot W, Abrantes R, Davel G, Vitale RG. In vitro interactions of antifungal agents against clinical isolates of Fusarium spp. Int J Antimicrob Agents. 2008;31(2):171–4.  https://doi.org/10.1016/j.ijantimicag.2007.09.005.CrossRefPubMedGoogle Scholar
  44. 44.
    Durand-Joly I, Alfandari S, Benchikh Z, Rodrigue M, Espinel-Ingroff A, Catteau B, et al. Successful outcome of disseminated Fusarium infection with skin localization treated with voriconazole and amphotericin B-lipid complex in a patient with acute leukemia. J Clin Microbiol. 2003;41(10):4898–900.  https://doi.org/10.1128/jcm.41.10.4898-4900.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Guzman-Cottrill JA, Zheng X, Chadwick EG. Fusarium solani endocarditis successfully treated with liposomal amphotericin B and voriconazole. Pediatr Infect Dis J. 2004;23(11):1059–61.  https://doi.org/10.1097/01.inf.0000143649.90952.41.CrossRefPubMedGoogle Scholar
  46. 46.
    Rothe A, Seibold M, Hoppe T, Seifert H, Engert A, Caspar C, et al. Combination therapy of disseminated Fusarium oxysporum infection with terbinafine and amphotericin B. Ann Hematol. 2004;83(6):394–7.  https://doi.org/10.1007/s00277-003-0795-x.CrossRefPubMedGoogle Scholar
  47. 47.
    Makowsky MJ, Warkentin DI, Savoie ML. Caspofungin and amphotericin B for disseminated Fusarium verticillioides in leukemia. Ann Pharmacother. 2005;39(7-8):1365–6.  https://doi.org/10.1345/aph.1D292.CrossRefPubMedGoogle Scholar
  48. 48.
    Ho DY, Lee JD, Rosso F, Montoya JG. Treating disseminated fusariosis: amphotericin B, voriconazole or both? Mycoses. 2007;50(3):227–31.  https://doi.org/10.1111/j.1439-0507.2006.01346.x.CrossRefPubMedGoogle Scholar
  49. 49.
    Neuburger S, Massenkeil G, Seibold M, Lutz C, Tamm I, le Coutre P, et al. Successful salvage treatment of disseminated cutaneous fusariosis with liposomal amphotericin B and terbinafine after allogeneic stem cell transplantation. Transpl Infect Dis. 2008;10(4):290–3.  https://doi.org/10.1111/j.1399-3062.2007.00296.x.CrossRefPubMedGoogle Scholar
  50. 50.
    Inano S, Kimura M, Iida J, Arima N. Combination therapy of voriconazole and terbinafine for disseminated fusariosis: case report and literature review. J Infect Chemother. 2013;19(6):1173–80.  https://doi.org/10.1007/s10156-013-0594-9.CrossRefPubMedGoogle Scholar
  51. 51.
    Nucci M, Marr KA, Vehreschild MJ, de Souza CA, Velasco E, Cappellano P, et al. Improvement in the outcome of invasive fusariosis in the last decade. Clin Microbiol Infect. 2014;20(6):580–5.  https://doi.org/10.1111/1469-0691.12409.CrossRefPubMedGoogle Scholar
  52. 52.
    • Nambiar P, Cober E, Johnson L, Brizendine KD. Fatal Fusarium infection manifesting as osteomyelitis following previous treatment with amphotericin B in a multi-visceral transplant: Case report and review of Fusarium infections in solid organ transplantation. Transpl Infect Dis. 2018;20(3):e12872.  https://doi.org/10.1111/tid.12872This case report reviews all theFusariuminfections in the SOT population. CrossRefPubMedGoogle Scholar
  53. 53.
    Lackner M, de Hoog GS, Verweij PE, Najafzadeh MJ, Curfs-Breuker I, Klaassen CH, et al. Species-specific antifungal susceptibility patterns of Scedosporium and Pseudallescheria species. Antimicrob Agents Chemother. 2012;56(5):2635–42.  https://doi.org/10.1128/AAC.05910-11.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Troke P, Aguirrebengoa K, Arteaga C, Ellis D, Heath CH, Lutsar I, et al. Treatment of scedosporiosis with voriconazole: clinical experience with 107 patients. Antimicrob Agents Chemother. 2008;52(5):1743–50.  https://doi.org/10.1128/AAC.01388-07.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Martin-Vicente A, Guarro J, Gonzalez GM, Lass-Florl C, Lackner M, Capilla J. Voriconazole MICs are predictive for the outcome of experimental disseminated scedosporiosis. J Antimicrob Chemother. 2017;72(4):1118–22.  https://doi.org/10.1093/jac/dkw532.CrossRefPubMedGoogle Scholar
  56. 56.
    Pfaller MA, Messer SA, Rhomberg PR, Jones RN, Castanheira M. In vitro activities of isavuconazole and comparator antifungal agents tested against a global collection of opportunistic yeasts and molds. J Clin Microbiol. 2013;51(8):2608–16.  https://doi.org/10.1128/JCM.00863-13.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Miceli MH, Kauffman CA. Isavuconazole: a new broad-spectrum triazole antifungal agent. Clin Infect Dis. 2015;61(10):1558–65.  https://doi.org/10.1093/cid/civ571.CrossRefPubMedGoogle Scholar
  58. 58.
    McCarthy MW, Moriyama B, Petraitiene R, Walsh TJ, Petraitis V. Clinical pharmacokinetics and pharmacodynamics of isavuconazole. Clin Pharmacokinet. 2018;57(12):1483–91.  https://doi.org/10.1007/s40262-018-0673-2.CrossRefPubMedGoogle Scholar
  59. 59.
    Yustes C, Guarro J. In vitro synergistic interaction between amphotericin B and micafungin against Scedosporium spp. Antimicrob Agents Chemother. 2005;49(8):3498–500.  https://doi.org/10.1128/AAC.49.8.3498-3500.2005.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Cuenca-Estrella M, Alastruey-Izquierdo A, Alcazar-Fuoli L, Bernal-Martinez L, Gomez-Lopez A, Buitrago MJ, et al. In vitro activities of 35 double combinations of antifungal agents against Scedosporium apiospermum and Scedosporium prolificans. Antimicrob Agents Chemother. 2008;52(3):1136–9.  https://doi.org/10.1128/AAC.01160-07.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Meletiadis J, Mouton JW, Meis JF, Verweij PE. Combination chemotherapy for the treatment of invasive infections by Scedosporium prolificans. Clin Microbiol Infect. 2000;6(6):336–7.  https://doi.org/10.1046/j.1469-0691.2000.00089.x.CrossRefPubMedGoogle Scholar
  62. 62.
    Meletiadis J, Mouton JW, Meis JF, Verweij PE. In vitro drug interaction modeling of combinations of azoles with terbinafine against clinical Scedosporium prolificans isolates. Antimicrob Agents Chemother. 2003;47(1):106–17.  https://doi.org/10.1128/aac.47.1.106-117.2003.CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gosbell IB, Toumasatos V, Yong J, Kuo RS, Ellis DH, Perrie RC. Cure of orthopaedic infection with Scedosporium prolificans, using voriconazole plus terbinafine, without the need for radical surgery. Mycoses. 2003;46(5-6):233–6.  https://doi.org/10.1046/j.1439-0507.2003.00878.x.CrossRefPubMedGoogle Scholar
  64. 64.
    Howden BP, Slavin MA, Schwarer AP, Mijch AM. Successful control of disseminated Scedosporium prolificans infection with a combination of voriconazole and terbinafine. Eur J Clin Microbiol Infect Dis. 2003;22(2):111–3.  https://doi.org/10.1007/s10096-002-0877-z.CrossRefPubMedGoogle Scholar
  65. 65.
    Bhat SV, Paterson DL, Rinaldi MG, Veldkamp PJ. Scedosporium prolificans brain abscess in a patient with chronic granulomatous disease: successful combination therapy with voriconazole and terbinafine. Scand J Infect Dis. 2007;39(1):87–90.  https://doi.org/10.1080/00365540600786564.CrossRefPubMedGoogle Scholar
  66. 66.
    Tong SY, Peleg AY, Yoong J, Handke R, Szer J, Slavin M. Breakthrough Scedosporium prolificans infection while receiving voriconazole prophylaxis in an allogeneic stem cell transplant recipient. Transpl Infect Dis. 2007;9(3):241–3.  https://doi.org/10.1111/j.1399-3062.2007.00203.x.CrossRefPubMedGoogle Scholar
  67. 67.
    Li JY, Yong TY, Grove DI, Coates PT. Successful control of Scedosporium prolificans septic arthritis and probable osteomyelitis without radical surgery in a long-term renal transplant recipient. Transpl Infect Dis. 2008;10(1):63–5.  https://doi.org/10.1111/j.1399-3062.2007.00240.x.CrossRefPubMedGoogle Scholar
  68. 68.
    Johnson LS, Shields RK, Clancy CJ. Epidemiology, clinical manifestations, and outcomes of Scedosporium infections among solid organ transplant recipients. Transpl Infect Dis. 2014;16(4):578–87.  https://doi.org/10.1111/tid.12244.CrossRefPubMedGoogle Scholar
  69. 69.
    • Seidel D, Meissner A, Lackner M, Piepenbrock E, Salmanton-Garcia J, Stecher M, et al. Prognostic factors in 264 adults with invasive Scedosporium spp. and Lomentospora prolificans infection reported in the literature and FungiScope((R)). Crit Rev Microbiol. 2019;45(1):1–21.  https://doi.org/10.1080/1040841X.2018.1514366A comprehensive review ofScedosporiumandLomentospora prolificansinfections and their prognostic factors. CrossRefGoogle Scholar
  70. 70.
    Rodriguez MM, Calvo E, Serena C, Marine M, Pastor FJ, Guarro J. Effects of double and triple combinations of antifungal drugs in a murine model of disseminated infection by Scedosporium prolificans. Antimicrob Agents Chemother. 2009;53(5):2153–5.  https://doi.org/10.1128/AAC.01477-08.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    • Schwarz C, Brandt C, Melichar V, Runge C, Heuer E, Sahly H, et al. Combined antifungal therapy is superior to monotherapy in pulmonary scedosporiosis in cystic fibrosis. J Cyst Fibros. 2019;18(2):227–32.  https://doi.org/10.1016/j.jcf.2018.08.012Multicenter German study showing dual therapy is superior to monotherapy in the treatment ofScedosporium. CrossRefPubMedGoogle Scholar
  72. 72.
    Antas PR, Brito MM, Peixoto E, Ponte CG, Borba CM. Neglected and emerging fungal infections: review of hyalohyphomycosis by Paecilomyces lilacinus focusing in disease burden, in vitro antifungal susceptibility and management. Microbes Infect. 2012;14(1):1–8.  https://doi.org/10.1016/j.micinf.2011.08.004.CrossRefPubMedGoogle Scholar
  73. 73.
    Garzoni C, Garbino J. New azoles as first line therapy for Paecilomyces lilacinus in transplant patients. Transpl Infect Dis. 2008;10(2):149–50.  https://doi.org/10.1111/j.1399-3062.2007.00298.x.CrossRefPubMedGoogle Scholar
  74. 74.
    Van Schooneveld T, Freifeld A, Lesiak B, Kalil A, Sutton DA, Iwen PC. Paecilomyces lilacinus infection in a liver transplant patient: case report and review of the literature. Transpl Infect Dis. 2008;10(2):117–22.  https://doi.org/10.1111/j.1399-3062.2007.00248.x.CrossRefPubMedGoogle Scholar
  75. 75.
    Rimawi RH, Carter Y, Ware T, Christie J, Siraj D. Use of voriconazole for the treatment of Paecilomyces lilacinus cutaneous infections: case presentation and review of published literature. Mycopathologia. 2013;175(3-4):345–9.  https://doi.org/10.1007/s11046-012-9610-3.CrossRefPubMedGoogle Scholar
  76. 76.
    Trinh SA, Angarone MP. Purpureocillium lilacinum tattoo-related skin infection in a kidney transplant recipient. Transpl Infect Dis. 2017;19(3).  https://doi.org/10.1111/tid.12689.CrossRefGoogle Scholar
  77. 77.
    Almeida Oliveira M, Carmo A, Rosa A, Murta J. Posaconazole in the treatment of refractory Purpureocillium lilacinum (former Paecilomyces lilacinus) keratitis: the salvation when nothing works. BMJ Case Rep. 2019;12(4).  https://doi.org/10.1136/bcr-2018-228645.CrossRefGoogle Scholar
  78. 78.
    Houbraken J, Verweij PE, Rijs AJ, Borman AM, Samson RA. Identification of Paecilomyces variotii in clinical samples and settings. J Clin Microbiol. 2010;48(8):2754–61.  https://doi.org/10.1128/JCM.00764-10.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Chamilos G, Kontoyiannis DP. Voriconazole-resistant disseminated Paecilomyces variotii infection in a neutropenic patient with leukaemia on voriconazole prophylaxis. J Infect. 2005;51(4):e225–8.  https://doi.org/10.1016/j.jinf.2005.02.005.CrossRefPubMedGoogle Scholar
  80. 80.
    Steiner B, Aquino VR, Paz AA, Silla LM, Zavascki A, Goldani LZ. Paecilomyces variotii as an emergent pathogenic agent of pneumonia. Case Rep Infect Dis. 2013;2013:273848.  https://doi.org/10.1155/2013/273848.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Feldman R, Cockerham L, Buchan BW, Lu Z, Huang AM. Treatment of Paecilomyces variotii pneumonia with posaconazole: case report and literature review. Mycoses. 2016;59(12):746–50.  https://doi.org/10.1111/myc.12525.CrossRefPubMedGoogle Scholar
  82. 82.
    Marques DP, Carvalho J, Rocha S, Domingos R. A case of pulmonary mycetoma caused by Paecilomyces variotii. Eur J Case Rep Intern Med. 2019;6(2):001040.  https://doi.org/10.12890/2019_001040.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Fincher RM, Fisher JF, Lovell RD, Newman CL, Espinel-Ingroff A, Shadomy HJ. Infection due to the fungus Acremonium (cephalosporium). Medicine (Baltimore). 1991;70(6):398–409.  https://doi.org/10.1097/00005792-199111000-00005.CrossRefGoogle Scholar
  84. 84.
    Das S, Saha R, Dar SA, Ramachandran VG. Acremonium species: a review of the etiological agents of emerging hyalohyphomycosis. Mycopathologia. 2010;170(6):361–75.  https://doi.org/10.1007/s11046-010-9334-1.CrossRefPubMedGoogle Scholar
  85. 85.
    Purnak T, Beyazit Y, Sahin GO, Shorbagi A, Akova M. A novel fungal pathogen under the spotlight--Acremonium spp. associated fungaemia in an immunocompetent host. Mycoses. 2011;54(1):78–80.  https://doi.org/10.1111/j.1439-0507.2009.01762.x.CrossRefPubMedGoogle Scholar
  86. 86.
    Ioakimidou A, Vyzantiadis TA, Sakellari I, Arabatzis M, Smias C, Douka V, et al. An unusual cluster of Acremonium kiliense fungaemias in a haematopoietic cell transplantation unit. Diagn Microbiol Infect Dis. 2013;75(3):313–6.  https://doi.org/10.1016/j.diagmicrobio.2012.11.015.CrossRefPubMedGoogle Scholar
  87. 87.
    Israel E, Hirschwerk D, Jhaveri KD. Acremonium skin and soft tissue infection in a kidney transplant recipient. Transplantation. 2013;95(4):e20.  https://doi.org/10.1097/TP.0b013e31827eefb4.CrossRefPubMedGoogle Scholar
  88. 88.
    Perdomo H, Sutton DA, Garcia D, Fothergill AW, Cano J, Gene J, et al. Spectrum of clinically relevant Acremonium species in the United States. J Clin Microbiol. 2011;49(1):243–56.  https://doi.org/10.1128/JCM.00793-10.CrossRefPubMedGoogle Scholar
  89. 89.
    Valson AT, Kakde ST, Mohanraj P, Basu G, Mohapatra A, Varughese S. Resolution of Acremonium kiliense subcutaneous abscess in a renal allograft recipient without antifungal therapy. Transpl Infect Dis. 2014;16(5):864–5.  https://doi.org/10.1111/tid.12259.CrossRefPubMedGoogle Scholar
  90. 90.
    Iwen PC, Schutte SD, Florescu DF, Noel-Hurst RK, Sigler L. Invasive Scopulariopsis brevicaulis infection in an immunocompromised patient and review of prior cases caused by Scopulariopsis and Microascus species. Med Mycol. 2012;50(6):561–9.  https://doi.org/10.3109/13693786.2012.675629.CrossRefPubMedGoogle Scholar
  91. 91.
    Delliere S, Rivero-Menendez O, Gautier C, Garcia-Hermoso D, Alastrey-Izquierdo A, Alanio A. Emerging mould infections: get prepared to meet unexpected fungi in your patient. Med Mycol. 2019.  https://doi.org/10.1093/mmy/myz039.
  92. 92.
    Cuenca-Estrella M, Gomez-Lopez A, Buitrago MJ, Mellado E, Garcia-Effron G, Rodriguez-Tudela JL. In vitro activities of 10 combinations of antifungal agents against the multiresistant pathogen Scopulariopsis brevicaulis. Antimicrob Agents Chemother. 2006;50(6):2248–50.  https://doi.org/10.1128/AAC.00162-06.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Skora M, Bulanda M, Jagielski T. In vitro activities of a wide panel of antifungal drugs against various Scopulariopsis and Microascus species. Antimicrob Agents Chemother. 2015;59(9):5827–9.  https://doi.org/10.1128/AAC.00978-15.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Paredes K, Capilla J, Mayayo E, Guarro J. Virulence and resistance to antifungal therapies of scopulariopsis species. Antimicrob Agents Chemother. 2016;60(4):2063–8.  https://doi.org/10.1128/AAC.02275-15.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Gavril D, Woerther PL, Ben Lakhdar A, Mahjoubi L, Routier E, Chachaty E, et al. Invasive cutaneous infection due to Scopulariopsis brevicaulis unsuccessfully treated with high-dose micafungin in a neutropenic patient. Infection. 2017;45(3):361–3.  https://doi.org/10.1007/s15010-016-0971-2.CrossRefPubMedGoogle Scholar
  96. 96.
    Yao L, Wan Z, Li R, Yu J. In vitro triple combination of antifungal drugs against clinical scopulariopsis and microascus species. Antimicrob Agents Chemother. 2015;59(8):5040–3.  https://doi.org/10.1128/AAC.00145-15.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Sellier P, Monsuez JJ, Lacroix C, Feray C, Evans J, Minozzi C, et al. Recurrent subcutaneous infection due to Scopulariopsis brevicaulis in a liver transplant recipient. Clin Infect Dis. 2000;30(5):820–3.  https://doi.org/10.1086/313764.CrossRefPubMedGoogle Scholar
  98. 98.
    Cawcutt K, Baddour LM, Burgess M. A case of Scopulariopsis brevicaulis endocarditis with mycotic aneurysm in an immunocompetent host. Case Rep Med. 2015;2015:872871.  https://doi.org/10.1155/2015/872871.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Rakita RM, Lease ED, Edelman JD, Mulligan MS. Successful treatment of scopulariopsis infection in a lung transplant recipient. Am J Transplant. 2015;15(7):2010.  https://doi.org/10.1111/ajt.13280.CrossRefPubMedGoogle Scholar
  100. 100.
    Pate MJ, Hemmige V, Woc-Colburn L, Restrepo A. Successful eradication of invasive Scopulariopsis brumptii in a liver transplant recipient. Transpl Infect Dis. 2016;18(2):275–9.  https://doi.org/10.1111/tid.12506.CrossRefPubMedGoogle Scholar
  101. 101.
    Arroyo MA, Walls TB, Relich RF, Davis TE, Schmitt BH. The brief case: Scopulariopsis Endocarditis-a case of mistaken Takayasu’s arteritis. J Clin Microbiol. 2017;55(9):2567–72.  https://doi.org/10.1128/JCM.02479-16.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Taton O, Bernier B, Etienne I, Bondue B, Lecomte S, Knoop C, et al. Necrotizing Microascus tracheobronchitis in a bilateral lung transplant recipient. Transpl Infect Dis. 2018;20(1).  https://doi.org/10.1111/tid.12806.CrossRefGoogle Scholar
  103. 103.
    Kammoun S, Rekik M, Trabelsi H, Neji S, Feki J, Ayadi A. Orbital cellulitis secondary to a fungal sinusitis caused by Scopulariopsis: The first case in Tunisia. J Mycol Med. 2018;28(2):384–6.  https://doi.org/10.1016/j.mycmed.2018.04.006.CrossRefPubMedGoogle Scholar
  104. 104.
    Huang L, Chen W, Guo L, Zhao L, Cao B, Liu Y, et al. Scopulariopsis/Microascus isolation in lung transplant recipients: a report of three cases and a review of the literature. Mycoses. 2019;62(10):883–92.  https://doi.org/10.1111/myc.12952.CrossRefPubMedGoogle Scholar
  105. 105.
    Richter S, Cormican MG, Pfaller MA, Lee CK, Gingrich R, Rinaldi MG, et al. Fatal disseminated Trichoderma longibrachiatum infection in an adult bone marrow transplant patient: species identification and review of the literature. J Clin Microbiol. 1999;37(4):1154–60.PubMedPubMedCentralGoogle Scholar
  106. 106.
    Chouaki T, Lavarde V, Lachaud L, Raccurt CP, Hennequin C. Invasive infections due to Trichoderma species: report of 2 cases, findings of in vitro susceptibility testing, and review of the literature. Clin Infect Dis. 2002;35(11):1360–7.  https://doi.org/10.1086/344270.CrossRefPubMedGoogle Scholar
  107. 107.
    Sandoval-Denis M, Sutton DA, Cano-Lira JF, Gene J, Fothergill AW, Wiederhold NP, et al. Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol. 2014;52(6):2112–25.  https://doi.org/10.1128/JCM.00429-14.CrossRefPubMedPubMedCentralGoogle Scholar
  108. 108.
    Alanio A, Brethon B, Feuilhade de Chauvin M, de Kerviler E, Leblanc T, Lacroix C, et al. Invasive pulmonary infection due to Trichoderma longibrachiatum mimicking invasive Aspergillosis in a neutropenic patient successfully treated with voriconazole combined with caspofungin. Clin Infect Dis. 2008;46(10):e116–8.  https://doi.org/10.1086/587750.CrossRefPubMedGoogle Scholar
  109. 109.
    Lagrange-Xelot M, Schlemmer F, Gallien S, Lacroix C, Molina JM. Trichoderma fungaemia in a neutropenic patient with pulmonary cancer and human immunodeficiency virus infection. Clin Microbiol Infect. 2008;14(12):1190–2.  https://doi.org/10.1111/j.1469-0691.2008.02111.x.CrossRefPubMedGoogle Scholar
  110. 110.
    Trabelsi S, Hariga D, Khaled S. First case of Trichoderma longibrachiatum infection in a renal transplant recipient in Tunisia and review of the literature. Tunis Med. 2010;88(1):52–7.PubMedGoogle Scholar
  111. 111.
    • Sautour M, Chretien ML, Valot S, Lafon I, Basmaciyan L, Legouge C, et al. First case of proven invasive pulmonary infection due to Trichoderma longibrachiatum in a neutropenic patient with acute leukemia. J Mycol Med. 2018;28(4):659–62.  https://doi.org/10.1016/j.mycmed.2018.10.001Case report and review of literature of documented invasive Trichoderma infections. CrossRefPubMedGoogle Scholar
  112. 112.
    Giraud S, Pihet M, Razafimandimby B, Carrere J, Degand N, Mely L, et al. Geosmithia argillacea: an emerging pathogen in patients with cystic fibrosis. J Clin Microbiol. 2010;48(7):2381–6.  https://doi.org/10.1128/JCM.00047-10.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Giraud S, Favennec L, Bougnoux ME, Bouchara JP. Rasamsonia argillacea species complex: taxonomy, pathogenesis and clinical relevance. Future Microbiol. 2013;8(8):967–78.  https://doi.org/10.2217/fmb.13.63.CrossRefPubMedGoogle Scholar
  114. 114.
    Babiker A, Gupta N, Gibas CFC, Wiederhold NP, Sanders C, Mele J, et al. Rasamsonia sp: An emerging infection amongst chronic granulomatous disease patients. A case of disseminated infection by a putatively novel Rasamsonia argillacea species complex involving the heart. Med Mycol Case Rep. 2019;24:54–7.  https://doi.org/10.1016/j.mmcr.2019.04.002.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Houbraken J, Spierenburg H, Frisvad JC. Rasamsonia, a new genus comprising thermotolerant and thermophilic Talaromyces and Geosmithia species. Antonie Van Leeuwenhoek. 2012;101(2):403–21.  https://doi.org/10.1007/s10482-011-9647-1.CrossRefPubMedGoogle Scholar
  116. 116.
    Ocak I, Bollino G, Bering P, Sciortino C, Cavalcante J. Rasamsonia argillacea species complex myocarditis in a patient with chronic granulomatous disease. Radiol Case Rep. 2019;14(6):766–70.  https://doi.org/10.1016/j.radcr.2019.03.035.CrossRefPubMedPubMedCentralGoogle Scholar
  117. 117.
    Houbraken J, Giraud S, Meijer M, Bertout S, Frisvad JC, Meis JF, et al. Taxonomy and antifungal susceptibility of clinically important Rasamsonia species. J Clin Microbiol. 2013;51(1):22–30.  https://doi.org/10.1128/JCM.02147-12.CrossRefPubMedPubMedCentralGoogle Scholar
  118. 118.
    Barton RC, Borman AM, Johnson EM, Houbraken J, Hobson RP, Denton M, et al. Isolation of the fungus Geosmithia argillacea in sputum of people with cystic fibrosis. J Clin Microbiol. 2010;48(7):2615–7.  https://doi.org/10.1128/JCM.00184-10.CrossRefPubMedPubMedCentralGoogle Scholar
  119. 119.
    De Ravin SS, Challipalli M, Anderson V, Shea YR, Marciano B, Hilligoss D, et al. Geosmithia argillacea: an emerging cause of invasive mycosis in human chronic granulomatous disease. Clin Infect Dis. 2011;52(6):e136–43.  https://doi.org/10.1093/cid/ciq250.CrossRefPubMedPubMedCentralGoogle Scholar
  120. 120.
    Valentin T, Neumeister P, Pichler M, Rohn A, Koidl C, Haas D, et al. Disseminated Geosmithia argillacea infection in a patient with gastrointestinal GvHD. Bone Marrow Transplant. 2012;47(5):734–6.  https://doi.org/10.1038/bmt.2011.149.CrossRefPubMedGoogle Scholar
  121. 121.
    Matos T, Cerar T, Praprotnik M, Krivec U, Pirs M. First recovery of Rasamsonia argillacea species complex isolated in adolescent patient with cystic fibrosis in Slovenia--case report and review of literature. Mycoses. 2015;58(8):506–10.  https://doi.org/10.1111/myc.12340.CrossRefPubMedGoogle Scholar
  122. 122.
    Hong G, White M, Lechtzin N, West NE, Avery R, Miller H, et al. Fatal disseminated Rasamsonia infection in cystic fibrosis post-lung transplantation. J Cyst Fibros. 2017;16(2):e3–7.  https://doi.org/10.1016/j.jcf.2017.01.005.CrossRefPubMedGoogle Scholar
  123. 123.
    Steinmann J, Dittmer S, Houbraken J, Buer J, Rath PM. In vitro activity of isavuconazole against Rasamsonia species. Antimicrob Agents Chemother. 2016;60(11):6890–1.  https://doi.org/10.1128/AAC.00742-16.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Abdolrasouli A, Bercusson AC, Rhodes JL, Hagen F, Buil JB, Tang AYY, et al. Airway persistence by the emerging multi-azole-resistant Rasamsonia argillacea complex in cystic fibrosis. Mycoses. 2018;61(9):665–73.  https://doi.org/10.1111/myc.12789.CrossRefPubMedGoogle Scholar
  125. 125.
    Hata K, Horii T, Miyazaki M, Watanabe NA, Okubo M, Sonoda J, et al. Efficacy of oral E1210, a new broad-spectrum antifungal with a novel mechanism of action, in murine models of candidiasis, aspergillosis, and fusariosis. Antimicrob Agents Chemother. 2011;55(10):4543–51.  https://doi.org/10.1128/AAC.00366-11.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    • Pfaller MA, Huband MD, Flamm RK, Bien PA, Castanheira M. In vitro activity of APX001A (Manogepix) and comparator agents against 1,706 fungal isolates collected during an International Surveillance Program in 2017. Antimicrob Agents Chemother. 2019;63(8).  https://doi.org/10.1128/AAC.00840-19APX001A has shown potent in vitro activity against all rare hyaline molds.
  127. 127.
    Wiederhold NP, Law D, Birch M. Dihydroorotate dehydrogenase inhibitor F901318 has potent in vitro activity against Scedosporium species and Lomentospora prolificans. J Antimicrob Chemother. 2017;72(7):1977–80.  https://doi.org/10.1093/jac/dkx065.CrossRefPubMedGoogle Scholar
  128. 128.
    Biswas C, Law D, Birch M, Halliday C, Sorrell TC, Rex J, et al. In vitro activity of the novel antifungal compound F901318 against Australian Scedosporium and Lomentospora fungi. Med Mycol. 2018;56(8):1050–4.  https://doi.org/10.1093/mmy/myx161.CrossRefPubMedGoogle Scholar
  129. 129.
    Lackner M, Binder U, Reindl M, Gonul B, Fankhauser H, Mair C, et al. N-chlorotaurine exhibits fungicidal activity against therapy-refractory Scedosporium Species and Lomentospora prolificans. Antimicrob Agents Chemother. 2015;59(10):6454–62.  https://doi.org/10.1128/AAC.00957-15.CrossRefPubMedPubMedCentralGoogle Scholar
  130. 130.
    Gruber M, Moser I, Nagl M, Lackner M. Bactericidal and fungicidal activity of N-chlorotaurine is enhanced in cystic fibrosis sputum medium. Antimicrob Agents Chemother. 2017;61(5).  https://doi.org/10.1128/AAC.02527-16.
  131. 131.
    Ben Yaakov D, Rivkin A, Mircus G, Albert N, Dietl AM, Kovalerchick D, et al. Identification and characterization of haemofungin, a novel antifungal compound that inhibits the final step of haem biosynthesis. J Antimicrob Chemother. 2016;71(4):946–52.  https://doi.org/10.1093/jac/dkv446.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Medicine, Division of Infectious DiseasesJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Transplant and Oncology Infectious Diseases ProgramJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations