Current Fungal Infection Reports

, Volume 7, Issue 4, pp 334–344 | Cite as

Allergic Aspects of Aspergillosis

Genomics and Pathogenesis (S Shoham, Section Editor)


Aspergillus species and principally A. fumigatus cause a spectrum of pulmonary diseases depending on underlying host genetic risk factors. These include invasive aspergillosis, hypersensitivity lung disease, allergic asthma, allergic bronchopulmonary aspergillosis, and mycetomas. These disorders, pathogenesis and host risk factors will be discussed.


Allergic bronchopulmonary aspergillosis ABPA Allergic bronchopulmonary mycosis ABPM Aspergillus chronic bronchitis Aspergilloma (mycetoma) Chronic cavitary pulmonary aspergillosis CCPA Chronic fibrosing pulmonary aspergillosis Hypersensitivity pneumonitis (HP) Invasive aspergillosis 


Compliance with Ethics Guidelines

Conflict of Interest

Author declares no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Knutsen AP. Immune responses in allergic bronchopulmonary aspergillosis and fungal allergy. In: Kurup VP, editor. Mold allergy, biology and pathogenesis. Kerala: Research Signpost; 2005. p. 209–35.Google Scholar
  2. 2.
    Kurup VP, Knutsen AP. Allergic bronchopulmonary aspergillosis. Allergy Front: Clin Manifest. 2009;3:351–66.CrossRefGoogle Scholar
  3. 3.
    Kurup VP, Kumar A. Immunodiagnosis of Aspergillosis. Clin Microbiol Rev. 1991;4:439–59.PubMedGoogle Scholar
  4. 4.
    Fairs A, Wardlaw AJ, Thompson JR, Pashley CH. Guidelines on ambient intramural airborne fungal spores. J Invest Allergol Clin Immunol. 2010;20:490–8.Google Scholar
  5. 5.
    Millington WM, Corden JM. Long term trends in outdoor Aspergillus/Penicillium spore concentrations in Derby, UK from 1970 to 2003 and a comparative study in 1994 and 1996 with the indoor air of two local houses. Aerobiologia. 2005;21:105–13.CrossRefGoogle Scholar
  6. 6.
    Slavin RG, Bedrossian CW, Hutcheson PS, Pittman S, Salinas-Madrigal L, Tsai CC, et al. A pathologic study of allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 1988;81:718–25.PubMedCrossRefGoogle Scholar
  7. 7.
    Schaffner A, Douglas H, Braude A. Selective protection against conidia by mononuclear and mycelia by polymorphonuclear phagocytes in resistance to Aspergillus: observations on these two lines of defense in vivo and in vitro with human and mouse phagocytes. J Clin Invest. 1982;69:617–31.PubMedCrossRefGoogle Scholar
  8. 8.
    Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. Prevention of corticosteroid-induced suppression of human polymorphonuclear leukocyte-induced damage of Aspergillus fumigatus hyphae by granulocyte colony stimulating factor and gamma interferon. Infect Immunol. 1993;61:4870–7.Google Scholar
  9. 9.
    Brummer E, Maqbool A, Stevens DA. Protection of bronchoalveolar macrophages by GM-CSF against dexamethasone suppression of fungicidal activity for Aspergillus fumigatus conidia. Med Mycol. 2001;39:509–15.PubMedGoogle Scholar
  10. 10.
    Brummer E, Maqbool A, Stevens DA. In vivo granulocyte macrophage colony-stimulating factor prevents dexamethasone suppression of killing of Aspergillus fumigatus by broncho-alveolar macrophages. J Leukocyte Biol. 2001;70:868–72.PubMedGoogle Scholar
  11. 11.
    Kauffman HF, Tomee JF. Inflammatory cells and airway defense against Aspergillus fumigatus. Immunol Allergy Clin North Am. 1998;18:619–40.CrossRefGoogle Scholar
  12. 12.
    Tomee JF, Kauffman HF. Putative virulence factors of Aspergillus fumigatus. Clin Exp Allergy. 2000;30:476–84.PubMedCrossRefGoogle Scholar
  13. 13.
    Tomee JF, Wierenga ATJ, Hiemstra PS, Kauffman HF. Proteases from Aspergillus fumigatus induce release of proinflammatory cytokines and cell detachment in airway epithelial cell lines. J Infect Dis. 1997;176:300–3.PubMedCrossRefGoogle Scholar
  14. 14.
    Kauffman HF, Tomee JF, van de Riet MA, Timmerman AJ, Borger P. Protease-dependent activation of epithelial cells by fungal allergens leads to morphologic changes and cytokine production. J Allergy Clin Immunol. 2000;105:1185–93.PubMedCrossRefGoogle Scholar
  15. 15.
    Tomee JF, Kauffman HF, Klimp AH, de Monchy JG, Köeter GH, Dubois AE. Immunologic significance of a collagen-derived culture filtrate containing proteolytic activity in Aspergillus-related diseases. J Allergy Clin Immunol. 1994;93:768–78.PubMedCrossRefGoogle Scholar
  16. 16.
    Reed CE. Inflammatory effect of environmental proteases on airway mucosa. Curr Allergy Asthma Rep. 2007;7:368–74.PubMedCrossRefGoogle Scholar
  17. 17.
    Reed CE, Kita H. The role of protease activation of inflammation in allergic respiratory diseases. J Allergy Clin Immunol. 2004;114:997–1008.PubMedCrossRefGoogle Scholar
  18. 18.
    Douwes J. (1-3)-b-D-glucans and respiratory health: a review of the scientific evidence. Indoor Air. 2005;15:160–9.PubMedCrossRefGoogle Scholar
  19. 19.
    Douwes J, Zuidhof A, Doekes G, vander Zee S, Wouters I, Boezen HM, et al. (1-3)-b-D-glucan and endotoxin in house dust and peak flow variability in children. Am J Respir Crit Care Med. 2000;162:1348–54.PubMedCrossRefGoogle Scholar
  20. 20.
    Shibata Y, Foster LA, Bradfield JF, Myrvik QN. Oral administration of chitin down-regulates serum IgE levels and lung eosinophilia in the allergic mouse. J Immunol. 2000;164:1314–21.PubMedGoogle Scholar
  21. 21.
    Zhu Z, Zheng T, Homer RJ, Kim YK, Chen NY, Cohn L, et al. Acidic mammalian chitinase in asthmatic Th2 inflammation and IL-13 pathway activation. Science. 2004;304:1678–82.PubMedCrossRefGoogle Scholar
  22. 22.
    Iossifova YY, Reponen T, Ryan PH, Levin L, Bernstein DI, Lockey JE, et al. Mold exposure during infancy as a predictor of potential asthma development. Ann Allergy Asthma Immunol. 2009;102:131–7.PubMedCrossRefGoogle Scholar
  23. 23.
    Chatterjee R, Batra J, Das S, Sharma SK, Ghosh B. Genetic association of acidic mammalian chitinase with atopic asthma and serum total IgE levels. J Allergy Clin Immunol. 2008;122:202–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Ober C, Tan Z, Sun Y, Possick JD, Pan L, Nicolae R, et al. Effect of variation in CHI3L1 on serum YKL-40 level, risk of asthma, and lung function. N Engl J Med. 2008;358:1682–91.PubMedCrossRefGoogle Scholar
  25. 25.
    Holloway JW, Yang IA, Holgate ST. Genetics of allergic disease. J Allergy Clin Immunol. 2010;125(suppl):S81–94.PubMedCrossRefGoogle Scholar
  26. 26.
    Juhn YJ, Kita H, Lee LA, Smith RW, Bagniewski SM, Weaver SM, et al. Childhood asthma and human leukocyte antigen type. Tissue Antigens. 2006;69:38–46.CrossRefGoogle Scholar
  27. 27.
    Torio A, Sanchez-Guerrero I, Muro M, Villar LM, Minguela A, Marin L, et al. HLA class II genotypic frequencies in atopic association of DRB1*01-DQB1*501 genotype with Artemisia vulgaris allergic asthma. Hum Immunol. 2003;64:811–5.PubMedCrossRefGoogle Scholar
  28. 28.
    Lin YC, Lu CC, Su HJ, Shen CY, Lei HY, Guo YL. The association between tumor necrosis factor, HLA-DR alleles, and IgE-mediated asthma in Taiwanese adolescents. Allergy. 2002;57:831–4.PubMedCrossRefGoogle Scholar
  29. 29.
    Cho SH, Kim YK, Oh HB, Jung JW, Son JW, Lee MH, et al. Associations of HLA-DRB1*04 to citrus red mite (Panonychus citri) and house dust mite sensitive asthma. Clin Exp Allergy. 2000;30:1568–75.PubMedCrossRefGoogle Scholar
  30. 30.
    • Knutsen AP, Vijay HM, Kariuki B, Santiago LA, Graff R, Wofford JD, et al. Mold-sensitivity in children with moderate-severe asthma is associated with HLA-DR and HLA-DQ. Allergy Eur J Allergy Clin Immunol. 2010;65:1367–75. Describes the HLA-DR/DQ genetic risk for development of moderate-severe asthma in mold sensitive asthmatic children.CrossRefGoogle Scholar
  31. 31.
    Chauhan BA, Knutsen AP, Hutcheson PS, Slavin RG, Bellone CJ. T cell subsets, epitope mapping, and HLA-restriction in patients with allergic bronchopulmonary aspergillosis. J Clin Invest. 1996;97:2324–3231.PubMedCrossRefGoogle Scholar
  32. 32.
    Chauhan B, Santiago L, Kirschmann DA, Hauptfeld V, Knutsen AP, Hutcheson PS, et al. The association of HLA-DR alleles and T cell activation with allergic bronchopulmonary aspergillosis. J Immunol. 1997;159:4072–6.PubMedGoogle Scholar
  33. 33.
    Chauhan B, Santiago L, Hutcheson PS, Schwartz HJ, Spitznagel E, Castro M, et al. Evidence for the involvement of two different MHC class II regions in susceptibility or protection in allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2000;106:723–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lamb JR, Higgins JA, Hetzel C, Hetzel C, Hayball JD, Lake RA, et al. The effects of changes at peptide residues contacting MHC class II T-cell receptor on antigen recognition and human Th0 cell effector function. Immunol. 1995;85:447–54.Google Scholar
  35. 35.
    Tsitoura DC, Verhoef A, Gelder CM, O'Hehir RE, Lamb JR. Altered T cell ligands derived from a major house dust mite allergen enhance IFN-g but not IL-4 production by human CD4+ T cells. J Immunol. 1996;157:2160–5.PubMedGoogle Scholar
  36. 36.
    Pfeiffer C, Stein J, Southwood S, Ketelaar H, Sette A, Bottomly K. Altered peptide ligands can control CD4 T lymphocyte differentiation in vivo. J Exp Med. 1995;181:1569–74.PubMedCrossRefGoogle Scholar
  37. 37.
    Evavold BD, Sloan-Lancaster J, Hsu BL, Allen PM. Separation of T helper 1 clone cytolysis from proliferation and lymphokine production using analog peptides. J Immunol. 1993;150:3131–40.PubMedGoogle Scholar
  38. 38.
    Racioppi L, Ronchese F, Matis LA, Germain RN. Peptide-major histocompatibility complex class II complexes with agonist/antagonist properties provide evidence for ligand related differences in T cell receptor dependent intracellular signaling. J Exp Med. 1993;177:1047–60.PubMedCrossRefGoogle Scholar
  39. 39.
    Nelms K, Keegan AD, Zamorano J, Ryan JJ, Paul WE. The IL-4 receptor: signaling mechanisms and biologic functions. Annu Rev Immunol. 1999;17:701–38.PubMedCrossRefGoogle Scholar
  40. 40.
    Hershey GK. IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol. 2003;111:677–90.PubMedCrossRefGoogle Scholar
  41. 41.
    • Knutsen AP, Vijay HM, Kariuki B, Santiago LA, Graff R, Wofford JD, et al. Association of IL-4RA single nucleotide polymorphisms, HLA-DR and HLA-DQ in children with Alternaria-sensitive moderate-severe asthma. Clin Mol Allergy. 2010;8:5. Describes the IL-4RA SNP genetic risk for development of moderate-severe asthma in mold sensitive asthmatic children.PubMedCrossRefGoogle Scholar
  42. 42.
    Knutsen AP, Kariuki B, Consolino JD, Warrier MR. IL-4 alpha chain receptor (IL-4Ra) polymorphisms in allergic bronchopulmonary aspergillosis. Clin Mol Allergy. 2006;3:1–6.Google Scholar
  43. 43.
    Casaulta C, Schöni MH, Weichel M, Crameri R, Jutel M, Daigle I, et al. IL-10 controls Aspergillus fumigatus- and Pseudomonas aeruginosa-specific T-cell response in cystic fibrosis. Pediatr Res. 2003;53:313–9.PubMedGoogle Scholar
  44. 44.
    Brourad J, Knauer N, Boelle P-Y, Corvol H, Henrion-Caude A, Flamant C, et al. Influence of interleukin-10 on airways colonization by Aspergillus fumigatus in cystic fibrosis patients. J Infect Dis. 2005;191:1988–91.CrossRefGoogle Scholar
  45. 45.
    Saxena S, Madan T, Shah A, Muralidhar K, Sarma PA. Association of polymorphisms in the collagen region of SP-A2 with increased levels of total IgE antibodies and eosinophilia in patients with allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2003;111:1001–7.PubMedCrossRefGoogle Scholar
  46. 46.
    Weikert LF, Edwards K, Chroneos ZC, et al. SP-A enhances uptake of bacillus Calmette-Guerin by macrophages through a specific SP-A receptor. Am J Physiol. 1997;272:L989–95.PubMedGoogle Scholar
  47. 47.
    Miller PW, Hamosh A, Macej Jr M, Greenberger PA, MacLean J, Walden SM, et al. Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations in allergic bronchopulmonary aspergillosis. Am J Hum Genet. 1996;59:45–51.PubMedGoogle Scholar
  48. 48.
    Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F. Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis. 2008;197:618–21.PubMedCrossRefGoogle Scholar
  49. 49.
    Wang JE, Warris A, Ellingsen EA, Jørgensen PF, Flo TH, Espevik T, et al. Involvement of CD14 and toll-like receptors in activation of human monocytes by Aspergillus fumigatus hyphae. Infect Immunol. 2001;69:2402–6.CrossRefGoogle Scholar
  50. 50.
    Bellocchio S, Moretti S, Perruccio K, Fallarino F, Bozza S, Montagnoli C, et al. TLRs govern neutrophil activity in aspergillosis. J Immunol. 2004;15(173):7406–15.Google Scholar
  51. 51.
    Lazarus R, Klimecki WT, Raby BA, Vercelli D, Palmer LJ, Kwiatkowski DJ, et al. Single-nucleotide polymorphisms in the Toll-like receptor 9 gene (TLR9): frequencies, pairwise linkage disequilibrium, and haplotypes in three U.S. ethnic groups and exploratory case-control disease association studies. Genomics. 2003;81:85–91.PubMedCrossRefGoogle Scholar
  52. 52.
    Novak N, Yu CF, Bussmann C, Maintz L, Peng WM, Hart J, et al. Putative association of a TLR9 promoter polymorphism with atopic eczema. Allergy. 2007;62:766–72.PubMedCrossRefGoogle Scholar
  53. 53.
    •• Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, et al. Fungal diseases of the lower airway task force. Fungi and allergic lower respiratory diseases. J Allergy Clin Immunol. 2012;129:280–91. Excellent review of fungal allergy and lower airway disease.PubMedCrossRefGoogle Scholar
  54. 54.
    Pasqualotto A, Powell G, Niven R, Denning DW. Evaluation of the effect of antifungal therapy on severe asthma with fungal sensitization (SAFS) and allergic bronchopulmonary aspergillosis. Respirology. 2009;14:1121–7.PubMedCrossRefGoogle Scholar
  55. 55.
    •• Fairs A, Agbetile J, Hargadon B, Bourne M, Monteiro WR, Brightling CE, et al. IgE sensitisation to Aspergillus fumigatus is associated with reduced lung function in asthma. Am J Respir Crit Care Med. 2010;182:1362–8. Important study describing the Aspergillus airway colonization and allergy sensitization in the development of severe persistent asthma in adults.PubMedCrossRefGoogle Scholar
  56. 56.
    Greenberger PA, Patterson R. Allergic bronchopulmonary aspergillosis and the evaluation of the patient with asthma. J Allergy Clin Immunol. 1988;81:646–50.PubMedCrossRefGoogle Scholar
  57. 57.
    Greenberger PA. Allergic bronchopulmonary aspergillosis. J Allergy Clin Immunol. 2002;110:685–92.PubMedCrossRefGoogle Scholar
  58. 58.
    Patterson R, Greenberger PA, Radin RC, Roberts M. Allergic bronchopulmonary aspergillosis. Staging as an aid to management. Ann Intern Med. 1982;96:286–91.PubMedCrossRefGoogle Scholar
  59. 59.
    Stevens DA, Moss R, Kurup VP, Knutsen AP, Greenberger P, Judson MA, et al. Allergic bronchopulmonary Aspergillosis in cystic fibrosis: cystic fibrosis foundation consensus conference. Clin Infect Dis. 2003;37:S225–64.PubMedCrossRefGoogle Scholar
  60. 60.
    • Singh B, Denning DW. Allergic bronchopulmonary mycosis due to Alternaria: case report and review. Med Mycol Case Rep. 2012;1:20–3. Important report describing Alternaria causing allergic bronchopulmonary mycosis.CrossRefGoogle Scholar
  61. 61.
    Hemmann S, Nikolaizik WH, Schoni MH, Blaser K, Crameri R. Differential IgE recognition of recombinant Aspergillus fumigatus allergens by cystic fibrosis patients with allergic bronchopulmonary aspergillosis. Eur J Immunol. 1998;28:1155–60.PubMedCrossRefGoogle Scholar
  62. 62.
    Nikolaizik WH, Weichel M, Blaser K, Crameri R. Intracutaneous tests with recombinant allergens in cystic fibrosis patients with allergic bronchopulmonary aspergillosis and Aspergillus allergy. Am J Resp Crit Care Med. 2002;165:916–21.PubMedCrossRefGoogle Scholar
  63. 63.
    Kraemer R, Delosea N, Ballinari P, Gallati S, Crameri R. Effect of allergic bronchopulmonary aspergillosis on lung function in children with cystic fibrosis. Am J Resp Crit Care Med. 2006;174:1211–20.PubMedCrossRefGoogle Scholar
  64. 64.
    •• Baxter CG, Dunn G, Jones AM, Webb K, Gore R, Richardson MD, Denning D W. Classification of aspergillosis in adult cystic fibrosis, J Allergy Clin Immunol 2013; May 29, Epub ahead of print. Describes a novel classification of airway diseases caused by Aspergillus in cystic fibrosis. Google Scholar
  65. 65.
    Latzin P, Hartl D, Regamey N, Frey U, Schoeni MH, Casaulta C. Comparison of serum markers for allergic bronchopulmonary aspergillosis in cystic fibrosis. Eur Respir J. 2008;31:36–42.PubMedCrossRefGoogle Scholar
  66. 66.
    Hartl D, Latzin P, Zissel G, Krane M, Krauss-Etschmann S, Griese M. Chemokines indicate allergic bronchopulmonary aspergillosis in patients with cystic fibrosis. Am J Respir Crit Care Med. 2006;173:370–1376.CrossRefGoogle Scholar
  67. 67.
    Gernez Y, Dunn CE, Everson C, Mitsunaga E, Gudiputi L, Krasinska K, et al. Blood basophils from cystic fibrosis patients with allergic bronchopulmonary aspergillosis are primed and hyper-responsive to stimulation by aspergillus allergens. J Cystic Fibrosis. 2012;11:502–10.CrossRefGoogle Scholar
  68. 68.
    Knutsen AP. Immunopathology and immunogenetics of allergic bronchopulmonary aspergillosis. J Allergy. 2011;2011:1–9.Google Scholar
  69. 69.
    Kreindler JL, Steele C, Nguyen N, Chan YR, Pilewski JM, Alcorn JF, et al. Vitamin D3 attenuates Th2 responses to Aspergillus fumigatus mounted by CD4+ T cells from cystic fibrosis patients with allergic bronchopulmonary aspergillosis. J Clin Invest. 2010;120:3242–354.PubMedCrossRefGoogle Scholar
  70. 70.
    Denning DW. Clinical manifestations and diagnosis of chronic pulmonary aspergillosis. UpToDate April 2013.Google Scholar
  71. 71.
    Knutsen AP, Temprano J, Wooldridge JL, Bhatla D, Slavin RG. Environmental exposures in the normal host. In: Wilmott R, Boat T, Bush V, Chernick V, Deterding RR, Ratjen F, editors. Kendig’s disorders of the respiratory tract in children, vol. Chapter 59. 8th ed. Philadelphia: Saunders Elsevier Inc; 2012. p. 858–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Division of Allergy & Immunology, Department of PediatricsSaint Louis UniversitySt. LouisUSA

Personalised recommendations