Current Fungal Infection Reports

, Volume 7, Issue 2, pp 126–131 | Cite as

Understanding Vulvovaginal Candidiasis Through a Community Genomics Approach

Translational Research (R Wheeler, Section Editor)


Vulvovaginal candidiasis (VVC), predominantly caused by Candida albicans, is one of the most common types of infectious vaginitis. Extensive study has been directed toward understanding host defenses against this infection, and results remain inconclusive. While many have examined the role of innate and cell-mediated immunity, as well as Candida-specific antibodies and the anti-Candida activity of vaginal epithelial cells, little attention has been given to one of the most important players: the vaginal microbiota. Exploring changes in species composition and gene expression within the vaginal community using high-throughput genomic technologies is invaluable to fully understanding Candida pathogenesis and host response to infection. This integrative perspective of pathogenesis, host response and microbial influence are critical to our ability to improve routine gynecologic care and treatment of vaginal infections.


VVC Microbiome Genomics Candida albicans Vagina 



JR was supported by Public Health Services grants UH2AI83264 and U01AI70921 for some of the work described in this article.

Conflict of Interest

L.L. Bradford declares that she has no conflict of interest.

J. Ravel declares that he has no conflict of interest.

V. Bruno declares that he has no conflict of interest.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Sobel JD, Faro S, Force RW, Foxman B, Ledger WJ, et al. Vulvovaginal candidiasis: epidemiologic, diagnostic, and therapeutic considerations. YMOB. 1998;178:203–11.Google Scholar
  2. 2.
    Sobel JD. Vulvovaginal candidosis. Lancet. 2007;369:1961–71.PubMedCrossRefGoogle Scholar
  3. 3.
    Geiger AM, Foxman B, Sobel JD. Chronic vulvovaginal candidiasis: characteristics of women with Candida albicans, C glabrata and no candida. Genitourin Med. 1995;71:304–7.PubMedGoogle Scholar
  4. 4.
    Nyirjesy P. Chronic vulvovaginal candidiasis. Am Fam Physician. 2001;63:697–702.PubMedGoogle Scholar
  5. 5.
    Anderson MR, Klink K, Cohrssen A. Evaluation of vaginal complaints. JAMA. 2004;291:1368–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Workowski KA, Berman SM. Sexually transmitted diseases treatment guidelines, 2010; 2010.Google Scholar
  7. 7.
    Sobel JD. Epidemiology and pathogenesis of recurrent vulvovaginal candidiasis. YMOB. 1985;152:924–35.Google Scholar
  8. 8.
    Sobel JD. Vaginitis. N Engl J Med. 1997;337:1896–903.PubMedCrossRefGoogle Scholar
  9. 9.
    de Leon EM, Jacober SJ, Sobel JD, Foxman B. Prevalence and risk factors for vaginal Candida colonization in women with type 1 and type 2 diabetes. BMC Infect Dis. 2002;2:1.PubMedCrossRefGoogle Scholar
  10. 10.
    Sobel JD. Pathogenesis of recurrent vulvovaginal Candidiasis. Curr Infect Dis Rep. 2002;4:514–9.PubMedCrossRefGoogle Scholar
  11. 11.
    Hetticarachchi N, Ashbee HR, Wilson JD. Prevalence and management of non-albicans vaginal candidiasis. Sex Transm Infect. 2010;86:99–100.PubMedCrossRefGoogle Scholar
  12. 12.
    • Babic M, Hukic M. Candida albicans and non-albicans species as etiological agent of vaginitis in pregnant and non-pregnant women. Bosnian J Basic Med Sci. 2010;10(1):89–97. This article examines the contribution of non-­–albicans species of Candida to the burden of vaginal candidiasis.Google Scholar
  13. 13.
    Zeng J, Zong L-L, Mao T, Huang Y-X, Xu Z-M. Distribution of Candida albican genotype and Candida species is associated with the severity of vulvovagianl candidiasis. Nan Fang Yi Ke Da Xue Xue Bao. 2011;31:1649–53.PubMedGoogle Scholar
  14. 14.
    Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010;12:273–82.PubMedCrossRefGoogle Scholar
  15. 15.
    Romani L, Bistoni F, Puccetti P. Adaptation of Candida albicans to the host environment: the role of morphogenesis in virulence and survival in mammalian hosts. Curr Opin Microbiol. 2003;6:338–43.PubMedCrossRefGoogle Scholar
  16. 16.
    Staib P, Kretschmar M, Nichterlein T, Hof H, Morschhäuser J. Differential activation of a Candida albicans virulence gene family during infection. Proc Natl Acad Sci USA. 2000;97:6102–7.PubMedCrossRefGoogle Scholar
  17. 17.
    Filler SG, Sheppard DC. Fungal invasion of normally non-phagocytic host cells. PLoS Pathog. 2006;2:e129.PubMedCrossRefGoogle Scholar
  18. 18.
    Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.PubMedCrossRefGoogle Scholar
  19. 19.
    Ray TL, Payne CD. Scanning electron microscopy of epidermal adherence and cavitation in murine candidiasis: a role for Candida acid proteinase. Infect Immun. 1988;56:1942–9.PubMedGoogle Scholar
  20. 20.
    Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, et al. Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol. 2005;7:499–510.PubMedCrossRefGoogle Scholar
  21. 21.
    Eversole LR, Reichart PA, Ficarra G. Oral keratinocyte immune responses in HIV-associated candidiasis. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1997;84(4):372–80.PubMedCrossRefGoogle Scholar
  22. 22.
    Farah CS, Ashman RB, Challacombe SJ. Oral candidosis. Clin Dermatol. 2000;18:553–62.PubMedCrossRefGoogle Scholar
  23. 23.
    Lian CH, Liu WD. Differential expression of Candida albicans secreted aspartyl proteinase in human vulvovaginal candidiasis. Mycoses. 2007;50:383–90.PubMedCrossRefGoogle Scholar
  24. 24.
    Taylor BN, Staib P, Binder A, Biesemeier A, Sehnal M, et al. Profile of Candida albicans-secreted aspartic proteinase elicited during vaginal infection. Infect Immun. 2005;73:1828–35.PubMedCrossRefGoogle Scholar
  25. 25.
    Paiva LCF, Vidigal PG, Donatti L, Svidzinski TIE, Consolaro MEL. Assessment of in vitro biofilm formation by Candida species isolates from vulvovaginal candidiasis and ultrastructural characteristics. Micron. 2012;43:497–502.PubMedCrossRefGoogle Scholar
  26. 26.
    Harriott MM, Lilly EA, Rodriguez TE, Fidel PL, Noverr MC. Candida albicans forms biofilms on the vaginal mucosa. Microbiology (Reading, Engl). 2010;156:3635–44.CrossRefGoogle Scholar
  27. 27.
    Cheng S, Clancy CJ, Checkley MA, Zhang Z, Wozniak KL, et al. The role of Candida albicans NOT5 in virulence depends upon diverse host factors in vivo. Infect Immun. 2005;73:7190–7.PubMedCrossRefGoogle Scholar
  28. 28.
    De Bernardis F, Mühlschlegel FA, Cassone A. The pH of the host niche controls gene expression in and virulence of Candida albicans. Infect Immun. 1998;66(7):3317–25.PubMedGoogle Scholar
  29. 29.
    Fidel PL. History and update on host defense against vaginal Candidiasis. Am J Reprod Immunol. 2007;57:2–12.PubMedCrossRefGoogle Scholar
  30. 30.
    Leigh JE, Barousse M, Swoboda RK, Myers T, Hager S, et al. Candida-specific systemic cell-mediated immune reactivities in human immunodeficiency virus-positive persons with mucosal candidiasis. J Infect Dis. 2001;183:277–85.PubMedCrossRefGoogle Scholar
  31. 31.
    Schuman P, Sobel JD, Ohmit SE, Mayer KH, Carpenter CC, et al. Mucosal candidal colonization and candidiasis in women with or at risk for human immunodeficiency virus infection. HIV Epidemiology Research Study (HERS) Group. Clin Infect Dis. 1998;27:1161–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Steele C, Ozenci H, Luo W, Scott M, Fidel PL. Growth inhibition of Candida albicans by vaginal cells from naïve mice. Med Mycol. 1999;37:251–9.PubMedGoogle Scholar
  33. 33.
    Nomanbhoy F, Steele C, Yano J, Fidel PL. Vaginal and oral epithelial cell anti-Candida activity. Infect Immun. 2002;70:7081–8.PubMedCrossRefGoogle Scholar
  34. 34.
    Barousse MM, Steele C, Dunlap K, Espinosa T, Boikov D, et al. Growth inhibition of Candida albicans by human vaginal epithelial cells. J Infect Dis. 2001;184:1489–93.PubMedCrossRefGoogle Scholar
  35. 35.
    • Yano J, Noverr MC, Fidel PL. Cytokines in the host response to Candida vaginitis: Identifying a role for non-­–classical immune mediators, S100 alarmins. Cytokine. 2012;58:118–28. This article discusses the innate immune response to Candida.PubMedCrossRefGoogle Scholar
  36. 36.
    Chaim W, Foxman B, Sobel JD. Association of recurrent vaginal candidiasis and secretory ABO and Lewis phenotype. J Infect Dis. 1997;176:828–30.PubMedCrossRefGoogle Scholar
  37. 37.
    Babula O, Lazdane G, Kroica J, Ledger WJ, Witkin SS. Relation between recurrent vulvovaginal candidiasis, vaginal concentrations of mannose-binding lectin, and a mannose-binding lectin gene polymorphism in Latvian women. Clin Infect Dis. 2003;37:733–7.PubMedCrossRefGoogle Scholar
  38. 38.
    Fidel PL, Barousse M, Espinosa T, Ficarra M, Sturtevant J, et al. An intravaginal live Candida challenge in humans leads to new hypotheses for the immunopathogenesis of vulvovaginal candidiasis. Infect Immun. 2004;72:2939–46.PubMedCrossRefGoogle Scholar
  39. 39.
    Fidel Jr P. Immunity in vaginal candidiasis. Curr Opin Infect Dis. 2005;18(2):107–11.PubMedCrossRefGoogle Scholar
  40. 40.
    Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, et al. The human microbiome project. Nature. 2007;449:804–10.PubMedCrossRefGoogle Scholar
  41. 41.
    NIH HMP Working Group, Peterson J, Garges S, Giovanni M, McInnes P, et al. The NIH human microbiome project. Genome Res. 2009;19:2317–23.PubMedCrossRefGoogle Scholar
  42. 42.
    Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL. An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell. 2005;122:107–18.PubMedCrossRefGoogle Scholar
  43. 43.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–3.PubMedCrossRefGoogle Scholar
  44. 44.
    Dethlefsen L, McFall-Ngai M, Relman DA. An ecological and evolutionary perspective on human–microbe mutualism and disease. Nature. 2007;449:811–8.PubMedCrossRefGoogle Scholar
  45. 45.
    •• Ma B, Forney LJ, Ravel J. Vaginal microbiome: rethinking health and disease. Annu Rev Microbiol. 2012;66:371–89. This review provides an evidence-­based argument for studying both the composition and function of the vaginal ecosystem as a means for understanding vaginal health and disease.PubMedCrossRefGoogle Scholar
  46. 46.
    Sobel J. Is there a protective role for vaginal flora? Curr Infect Dis Rep. 1999;1:379–83.PubMedCrossRefGoogle Scholar
  47. 47.
    Donders GGG, Bosmans E, Dekeersmaecker A, Vereecken A, Van Bulck B, et al. Pathogenesis of abnormal vaginal bacterial flora. Am J Obstet Gynecol. 2000;182:872–8.PubMedCrossRefGoogle Scholar
  48. 48.
    Pybus V, Onderdonk AB. Microbial interactions in the vaginal ecosystem, with emphasis on the pathogenesis of bacterial vaginosis. Microbes Infect. 1999;1:285–92.PubMedCrossRefGoogle Scholar
  49. 49.
    Lai SK, Hida K, Shukair S, Wang Y-Y, Figueiredo A, et al. Human immunodeficiency virus type 1 is trapped by acidic but not by neutralized human cervicovaginal mucus. J Virol. 2009;83:11196–200.PubMedCrossRefGoogle Scholar
  50. 50.
    Gupta K, Stapleton AE, Hooton TM, Roberts PL, Fennell CL, et al. Inverse association of H2O2-producing lactobacilli and vaginal Escherichia coli colonization in women with recurrent urinary tract infections. J Infect Dis. 1998;178:446–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Taha TE, Hoover DR, Dallabetta GA, Kumwenda NI, Mtimavalye LA, et al. Bacterial vaginosis and disturbances of vaginal flora: association with increased acquisition of HIV. AIDS. 1998;12:1699–706.PubMedCrossRefGoogle Scholar
  52. 52.
    Gray RH, Wawer MJ, Sewankambo N, Serwadda D. HIV-1 infection associated with abnormal vaginal flora morphology and bacterial vaginosis. Lancet. 1997;350(9093):1780.Google Scholar
  53. 53.
    van De Wijgert JH, Mason PR, Gwanzura L, Mbizvo MT, Chirenje ZM, et al. Intravaginal practices, vaginal flora disturbances, and acquisition of sexually transmitted diseases in Zimbabwean women. J Infect Dis. 2000;181:587–94.CrossRefGoogle Scholar
  54. 54.
    Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial vaginosis is a strong predictor of Neisseria gonorrhoeae and Chlamydia trachomatis infection. Clin Infect Dis. 2003;36:663–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Boskey ER, Cone RA, Whaley KJ, Moench TR. Origins of vaginal acidity: high D/L lactate ratio is consistent with bacteria being the primary source. Hum Reprod. 2001.Google Scholar
  56. 56.
    Tomás M, Ocaña VS, Wiese B. Growth and lactic acid production by vaginal Lactobacillus acidophilus CRL 1259, and inhibition of uropathogenic Escherichia coli. J Med Microbiol. 2003;52(Pt 12):1117–24.CrossRefGoogle Scholar
  57. 57.
    Antonio MA, Hawes SE, Hillier SL. The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species. J Infect Dis. 1999;180:1950–6.PubMedCrossRefGoogle Scholar
  58. 58.
    Kaewsrichan J, Peeyananjarassri K, Kongprasertkit J. Selection and identification of anaerobic lactobacilli producing inhibitory compounds against vaginal pathogens. FEMS Immunol Med Microbiol. 2006;48:75–83.PubMedCrossRefGoogle Scholar
  59. 59.
    Klebanoff SJ, Hillier SL, Eschenbach DA, Waltersdorph AM. Control of the microbial flora of the vagina by H2O2-generating lactobacilli. J Infect Dis. 1991;164:94–100.PubMedCrossRefGoogle Scholar
  60. 60.
    Voravuthikunchai SP, Bilasoi S, Supamala O. Antagonistic activity against pathogenic bacteria by human vaginal lactobacilli. Anaerobe. 2006;12:221–6.PubMedCrossRefGoogle Scholar
  61. 61.
    Zhou X, Bent SJ, Schneider MG, Davis CC, Islam MR, et al. Characterization of vaginal microbial communities in adult healthy women using cultivation-independent methods. Microbiology (Reading, Engl). 2004;150:2565–73.CrossRefGoogle Scholar
  62. 62.
    Brotman RM, Ravel J. Ready or not: the molecular diagnosis of bacterial vaginosis. Clin Infect Dis. 2008;47(1):44–6.PubMedCrossRefGoogle Scholar
  63. 63.
    Fredricks DN, Fiedler TL. Molecular identification of bacteria associated with bacterial vaginosis. N Engl J Med. 2005;353(18):1899–911.PubMedCrossRefGoogle Scholar
  64. 64.
    Verstraelen H, Verhelst R, Claeys G, Temmerman M, Vaneechoutte M. Culture-independent analysis of vaginal microflora: the unrecognized association of Atopobium vaginae with bacterial vaginosis. YMOB. 2004;191:1130–2.Google Scholar
  65. 65.
    Linhares IM, Giraldo PC, Baracat EC. New findings about vaginal bacterial flora. Rev Assoc Med Bras. 2010;56:370–4.PubMedCrossRefGoogle Scholar
  66. 66.
    •• Ravel J, Gajer P, Abdo Z. Vaginal microbiome of reproductive-­age women. Proc Natl Acad Sci U S A. 2011;108 Suppl 1:4680–7. This article presents the first comprehensive description of the human vaginal microbiome using high-­throughput sequencing technologies.PubMedCrossRefGoogle Scholar
  67. 67.
    •• Gajer P, Brotman RM, Bai G, Sakamoto J, Schütte UME, et al. Temporal dynamics of the human vaginal microbiota. Sci Trans Med. 2012;4:132ra52. This article reveals that while some bacterial communities within the human vagina are relatively stable, others change in correlation with menstrual cycle, sexual activity, etc.CrossRefGoogle Scholar
  68. 68.
    Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  69. 69.
    Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Publ Group. 2009;10:57–63.Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Genome SciencesUniversity of Maryland School of MedicineBaltimoreUSA
  2. 2.Department of Microbiology and ImmunologyUniversity of Maryland School of MedicineBaltimoreUSA

Personalised recommendations