Current Fungal Infection Reports

, Volume 7, Issue 2, pp 152–159 | Cite as

Oral Colonization of Fungi

  • Julian R. Naglik
  • Shirley X. Tang
  • David L. Moyes
Translational Research (R Wheeler, Section Editor)


Opportunistic microbes are able to exist as commensals or pathogens depending on local environmental conditions. The bacterial microbiome at mucosal sites (gut, oral and vaginal) has been well characterized but there has been less focus on the fungal component of the microbiome, the “mycobiome”, especially of the oral mucosa. Genomic characterization studies have shown that Candida species are the most prevalent fungal species in the mycobiomes of the murine gut and human oral cavity, with C. albicans being the most abundant fungal species in the oral cavity. In this review, we outline recent advances in the characterization of the oral mycobiome, how different Candida species colonize, invade and infect the oral cavity, and how epithelial surfaces play a key role in antifungal activity and discriminate between commensal and pathogenic Candida.


Fungi Candida Yeast Hyphae Mycobiome Epithelium Mucosal Oral Vaginal Colonization Commensal Pathogen Infection Virulence Adhesion Invasion Damage Innate immunity Mitogen-activated protein kinase Nuclear factor-kappaB Signalling p38 c-Fos Danger response 


Conflict of Interest

J.R. Naglik, S.X. Tang and D.L. Moyes have received grants from the Medical Research Council and the Biotechnology and Biological Science Research Council


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Schluter J, Foster KR. The evolution of mutualism in gut microbiota via host epithelial selection. PLoS Biol. 2012;10:e1001424.PubMedCrossRefGoogle Scholar
  2. 2.
    Willing BP, Dicksved J, Halfvarson J, et al. A pyrosequencing study in twins shows that gastrointestinal microbial profiles vary with inflammatory bowel disease phenotypes. Gastroenterology. 2010;139:1844–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Claesson MJ, Jeffery IB, Conde S, et al. Gut microbiota composition correlates with diet and health in the elderly. Nature. 2012;488:178–84.PubMedCrossRefGoogle Scholar
  4. 4.
    Yatsunenko T, Rey FE, Manary MJ, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486:222–7.PubMedGoogle Scholar
  5. 5.
    The Human Microbiome Project C. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486:207–14.CrossRefGoogle Scholar
  6. 6.
    Li K, Bihan M, Yooseph S, Methe BA. Analyses of the microbial diversity across the human microbiome. PLoS One. 2012;7:e32118.PubMedCrossRefGoogle Scholar
  7. 7.
    Wade WG. The oral microbiome in health and disease. Pharmacol Res. 2013;69:137–43.PubMedCrossRefGoogle Scholar
  8. 8.
    •• Iliev ID, Funari VA, Taylor KD, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science. 2012;336:1314–7. First characterization of the complex interaction between a murine host and the gut mycobiome that can affect health and disease.PubMedCrossRefGoogle Scholar
  9. 9.
    • Scanlan PD, Marchesi JR. Micro-eukaryotic diversity of the human distal gut microbiota: qualitative assessment using culture-dependent and -independent analysis of faeces. ISME J. 2008;2:1183–93. First characterization of the human gut mycobiome.PubMedCrossRefGoogle Scholar
  10. 10.
    Rahman D, Mistry M, Thavaraj S, et al. Murine model of concurrent oral and vaginal Candida albicans colonization to study epithelial host-pathogen interactions. Microbes Infect. 2007;9:615–22.PubMedCrossRefGoogle Scholar
  11. 11.
    Samonis G, Galanakis E, Ntaoukakis M, et al. Effects of carbapenems and their combination with amikacin on murine gut colonisation by Candida albicans. Mycoses. 2012. doi: 10.1111/j.1439-0507.2012.02212.x.
  12. 12.
    Matsubara VH, Silva EG, Paula CR, et al. Treatment with probiotics in experimental oral colonization by Candida albicans in murine model (DBA/2). Oral Dis. 2012;18:260–4.PubMedCrossRefGoogle Scholar
  13. 13.
    Kanaguchi N, Narisawa N, Ito T, et al. Effects of salivary protein flow and indigenous microorganisms on initial colonization of Candida albicans in an in vivo model. BMC Oral Health. 2012;12:36.PubMedCrossRefGoogle Scholar
  14. 14.
    •• Ghannoum MA, Jurevic RJ, Mukherjee PK, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS Pathog. 2010;6:e1000713. First description of the healthy human oral mycobiome, demonstrating that multiple fungal species exist in the oral cavity.PubMedCrossRefGoogle Scholar
  15. 15.
    Iatta R, Napoli C, Borghi E, Montagna MT. Rare mycoses of the oral cavity: a literature epidemiologic review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2009;108:647–55.PubMedCrossRefGoogle Scholar
  16. 16.
    Samaranayake LP, Keung Leung W, Jin L. Oral mucosal fungal infections. Periodontol 2000. 2009;49:39–59.Google Scholar
  17. 17.
    Samaranayake LP, Fidel PL, Naglik JR, et al. Fungal infections associated with HIV infection. Oral Dis. 2002;8 Suppl 2:151–60.PubMedCrossRefGoogle Scholar
  18. 18.
    Fidel PL. History and update on host defense against vaginal candidiasis. Am J Reprod Immunol. 2007;57:2–12.PubMedCrossRefGoogle Scholar
  19. 19.
    Wisplinghoff H, Bischoff T, Tallent SM, et al. Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis. 2004;39:309–17.PubMedCrossRefGoogle Scholar
  20. 20.
    Jacobsen MD, Duncan AD, Bain J, et al. Mixed Candida albicans strain populations in colonized and infected mucosal tissues. FEMS Yeast Res. 2008;8:1334–8.PubMedCrossRefGoogle Scholar
  21. 21.
    Merenstein D, Hu H, Wang C, Hamilton P, et al. Colonization by Candida species of the oral and vaginal mucosa in HIV-infected and noninfected women. AIDS Res Hum Retroviruses. 2013;29:30–4.PubMedCrossRefGoogle Scholar
  22. 22.
    Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1–53.PubMedCrossRefGoogle Scholar
  23. 23.
    Moris DV, Melhem MS, Martins MA, et al. Prevalence and antifungal susceptibility of Candida parapsilosis complex isolates collected from oral cavities of HIV-infected individuals. J Med Microbiol. 2012;61:1758–65.PubMedCrossRefGoogle Scholar
  24. 24.
    Southern P, Horbul J, Maher D, Davis DA. C. albicans colonization of human mucosal surfaces. PLoS One. 2008;3:e2067.PubMedCrossRefGoogle Scholar
  25. 25.
    Lilly EA, Yano J, Fidel Jr PL. Annexin-A1 identified as the oral epithelial cell anti-Candida effector moiety. Mol Oral Microbiol. 2010;25:293–304.PubMedCrossRefGoogle Scholar
  26. 26.
    Fanning S, Mitchell AP. Fungal biofilms. PLoS Pathog. 2012;8:e1002585.PubMedCrossRefGoogle Scholar
  27. 27.
    Naglik JR, Moyes DL, Wachtler B, Hube B. Candida albicans interactions with epithelial cells and mucosal immunity. Microbes Infect. 2011;13:963–76.PubMedCrossRefGoogle Scholar
  28. 28.
    Hiller E, Zavrel M, Hauser N, et al. Adaptation, adhesion and invasion during interaction of Candida albicans with the host – focus on the function of cell wall proteins. Int J Med Microbiol. 2011;301:384–9.PubMedCrossRefGoogle Scholar
  29. 29.
    Zhu W, Filler SG. Interactions of Candida albicans with epithelial cells. Cell Microbiol. 2010;12:273–82.PubMedCrossRefGoogle Scholar
  30. 30.
    Weinberg A, Naglik JR, Kohli A, et al. Innate immunity including epithelial and nonspecific host factors: workshop 1B. Adv Dent Res. 2011;23:122–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Yano J, Lilly E, Barousse M, Fidel Jr PL. Epithelial cell-derived S100 calcium-binding proteins as key mediators in the hallmark acute neutrophil response during Candida vaginitis. Infect Immun. 2010;78:5126–37.PubMedCrossRefGoogle Scholar
  32. 32.
    Dongari-Bagtzoglou A, Fidel Jr PL. The host cytokine responses and protective immunity in oropharyngeal candidiasis. J Dent Res. 2005;84:966–77.PubMedCrossRefGoogle Scholar
  33. 33.
    Sweet SP, Challacombe SJ, Naglik JR. Whole and parotid saliva IgA and IgA-subclass responses to Candida albicans in HIV infection. Adv Exp Med Biol. 1995;371B:1031–4.PubMedGoogle Scholar
  34. 34.
    Chaffin WL. Candida albicans cell wall proteins. Microbiol Mol Biol Rev. 2008;72:495–544.PubMedCrossRefGoogle Scholar
  35. 35.
    Wachtler B, Wilson D, Haedicke K, et al. From attachment to damage: defined genes of Candida albicans mediate adhesion, invasion and damage during interaction with oral epithelial cells. PLoS One. 2011;6:e17046.PubMedCrossRefGoogle Scholar
  36. 36.
    Zakikhany K, Naglik JR, Schmidt-Westhausen A, et al. In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination. Cell Microbiol. 2007;9:2938–54.PubMedCrossRefGoogle Scholar
  37. 37.
    Villar CC, Kashleva H, Dongari-Bagtzoglou A. Role of Candida albicans polymorphism in interactions with oral epithelial cells. Oral Microbiol Immunol. 2004;19:262–9.PubMedCrossRefGoogle Scholar
  38. 38.
    Hoyer LL, Payne TL, Bell M, et al. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet. 1998;33:451–9.PubMedCrossRefGoogle Scholar
  39. 39.
    Liu Y, Filler SG. Candida albicans Als3, a multifunctional adhesin and invasin. Eukaryot Cell. 2011;10:168–73.PubMedCrossRefGoogle Scholar
  40. 40.
    Hoyer LL, Green CB, Oh SH, Zhao X. Discovering the secrets of the Candida albicans agglutinin-like sequence (ALS) gene family – a sticky pursuit. Med Mycol. 2008;46:1–15.PubMedCrossRefGoogle Scholar
  41. 41.
    Zhao X, Oh SH, Cheng G, et al. ALS3 and ALS8 represent a single locus that encodes a Candida albicans adhesin; functional comparisons between Als3p and Als1p. Microbiology. 2004;150:2415–28.PubMedCrossRefGoogle Scholar
  42. 42.
    • Salgado PS, Yan R, Taylor JD, et al. Structural basis for the broad specificity to host-cell ligands by the pathogenic fungus Candida albicans. Proc Natl Acad Sci U S A. 2011;108:15775–9. High-resolution NMR analysis of N-terminal Als adhesins identifying a mechanism by which this adhesin family may adhere to host ligands.PubMedCrossRefGoogle Scholar
  43. 43.
    • Staab JF, Bradway SD, Fidel Jr P, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science. 1999;283:1535–8. Identification of the first C. albicans hyphal protein that contributes to epithelial adhesion and mucosal infections.PubMedCrossRefGoogle Scholar
  44. 44.
    Naglik JR, Fostira F, Ruprai J, et al. Candida albicans HWP1 gene expression and host antibody responses in colonization and disease. J Med Microbiol. 2006;55:1323–7.PubMedCrossRefGoogle Scholar
  45. 45.
    Sundstrom P, Balish E, Allen CM. Essential role of the Candida albicans transglutaminase substrate, hyphal wall protein 1, in lethal oroesophageal candidiasis in immunodeficient mice. J Infect Dis. 2002;185:521–30.PubMedCrossRefGoogle Scholar
  46. 46.
    Dwivedi P, Thompson A, Xie Z, et al. Role of Bcr1-activated genes Hwp1 and Hyr1 in Candida albicans oral mucosal biofilms and neutrophil evasion. PLoS One. 2011;6:e16218.PubMedCrossRefGoogle Scholar
  47. 47.
    Dalle F, Wachtler B, L'Ollivier C, et al. Cellular interactions of Candida albicans with human oral epithelial cells and enterocytes. Cell Microbiol. 2010;12:248–71.PubMedCrossRefGoogle Scholar
  48. 48.
    • Phan QT, Myers CL, Fu Y, et al. Als3 Is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells. PLoS Biol. 2007;5:e64. Identification of the first C. albicans invasin and provides evidence that Als3 is a molecular mimic of human cadherins.PubMedCrossRefGoogle Scholar
  49. 49.
    Villar CC, Zhao XR. Candida albicans induces early apoptosis followed by secondary necrosis in oral epithelial cells. Mol Oral Microbiol. 2010;25:215–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Sun JN, Solis NV, Phan QT, et al. Host cell invasion and virulence mediated by Candida albicans Ssa1. PLoS Pathog. 2010;6:e1001181.PubMedCrossRefGoogle Scholar
  51. 51.
    Moreno-Ruiz E, Galan-Diez M, Zhu W, et al. Candida albicans internalization by host cells is mediated by a clathrin-dependent mechanism. Cell Microbiol. 2009;11:1179–89.PubMedCrossRefGoogle Scholar
  52. 52.
    Zhao XR, Villar CC. Trafficking of Candida albicans through oral epithelial endocytic compartments. Med Mycol. 2011;49:212–7.PubMedCrossRefGoogle Scholar
  53. 53.
    Diez-Orejas R, Fernandez-Arenas E. Candida albicans-macrophage interactions: genomic and proteomic insights. Future Microbiol. 2008;3:661–81.PubMedCrossRefGoogle Scholar
  54. 54.
    Tavanti A, Campa D, Bertozzi A, et al. Candida albicans isolates with different genomic backgrounds display a differential response to macrophage infection. Microbes Infect. 2006;8:791–800.PubMedCrossRefGoogle Scholar
  55. 55.
    Murciano C, Moyes DL, Runglall M, et al. Evaluation of the role of Candida albicans agglutinin-like sequence (Als) proteins in human oral epithelial cell interactions. PLoS One. 2012;7:e33362.PubMedCrossRefGoogle Scholar
  56. 56.
    Naglik J, Albrecht A, Bader O, Hube B. Candida albicans proteinases and host/pathogen interactions. Cell Microbiol. 2004;6:915–26.PubMedCrossRefGoogle Scholar
  57. 57.
    Naglik JR, Challacombe SJ, Hube B. Candida albicans secreted aspartyl proteinases in virulence and pathogenesis. Microbiol Mol Biol Rev. 2003;67:400–28.PubMedCrossRefGoogle Scholar
  58. 58.
    Hube B, Naglik JR. Extracellular hydrolases. In: Calderone RA, editor. Candida and candidiasis. Washington DC: ASM Press; 2002. p. 107–22.Google Scholar
  59. 59.
    Villar CC, Kashleva H, Nobile CJ, et al. Mucosal tissue invasion by Candida albicans is associated with E-cadherin degradation, mediated by transcription factor Rim101p and protease Sap5p. Infect Immun. 2007;75:2126–35.PubMedCrossRefGoogle Scholar
  60. 60.
    Moyes DL, Murciano C, Runglall M, et al. Activation of MAPK/c-Fos induced responses in oral epithelial cells is specific to Candida albicans and Candida dubliniensis hyphae. Med Microbiol Immunol. 2012;201:93–101.PubMedCrossRefGoogle Scholar
  61. 61.
    Wagener J, Weindl G, de Groot PWJ, et al. Glycosylation of Candida albicans cell wall proteins is critical for induction of innate immune responses and apoptosis of epithelial cells. PLoS One. 2012;7:e50518.PubMedCrossRefGoogle Scholar
  62. 62.
    Calderone RA. Candida and candidiasis, vol. 2. Washington DC: ASM Press; 2002.Google Scholar
  63. 63.
    Silva S, Negri M, Henriques M, et al. Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev. 2012;36:288–305.PubMedCrossRefGoogle Scholar
  64. 64.
    Silva S, Hooper SJ, Henriques M, et al. The role of secreted aspartyl proteinases in Candida tropicalis invasion and damage of oral mucosa. Clin Microbiol Infect. 2011;17:264–72.PubMedCrossRefGoogle Scholar
  65. 65.
    Silva S, Henriques M, Oliveira R, et al. Characterization of Candida parapsilosis infection of an in vitro reconstituted human oral epithelium. Eur J Oral Sci. 2009;117:669–75.PubMedCrossRefGoogle Scholar
  66. 66.
    Gacser A, Schafer W, Nosanchuk JS, et al. Virulence of Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis in reconstituted human tissue models. Fungal Genet Biol. 2007;44:1336–41.PubMedCrossRefGoogle Scholar
  67. 67.
    De Las PA, Pan SJ, Castano I, et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003;17:2245–58.CrossRefGoogle Scholar
  68. 68.•
    Cormack BP, Ghori N, Falkow S. An adhesin of the yeast pathogen Candida glabrata mediating adherence to human epithelial cells. Science. 1999;285:578–82. Identification of the first C. glabrata adhesin required for binding to human epithelial cells.PubMedCrossRefGoogle Scholar
  69. 69.
    Jackson AP, Gamble JA, Yeomans T, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19:2231–44.PubMedCrossRefGoogle Scholar
  70. 70.
    Hoyer LL, Fundyga R, Hecht JE, et al. Characterization of agglutinin-like sequence genes from non-albicans Candida and phylogenetic analysis of the ALS family. Genetics. 2001;157:1555–67.PubMedGoogle Scholar
  71. 71.
    •• Butler G, Rasmussen MD, Lin MF, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459(7247):657–62. Report of the genome sequences of six Candida species enabling post-genomic analysis for pathogenicity studies.PubMedCrossRefGoogle Scholar
  72. 72.
    Merkerova M, Dostal J, Hradilek M, et al. Cloning and characterization of Sapp2p, the second aspartic proteinase isoenzyme from Candida parapsilosis. FEMS Yeast Res. 2006;6:1018–26.PubMedCrossRefGoogle Scholar
  73. 73.
    Kantarcioglu AS, Yucel A. Phospholipase and protease activities in clinical Candida isolates with reference to the sources of strains. Mycoses. 2002;45:160–5.PubMedCrossRefGoogle Scholar
  74. 74.
    Zaugg C, Borg-von Zepelin M, et al. Secreted aspartic proteinase family of Candida tropicalis. Infect Immun. 2001;69:405–12.PubMedCrossRefGoogle Scholar
  75. 75.
    Naglik JR, Moyes D, Makwana J, et al. Quantitative expression of the Candida albicans secreted aspartyl proteinase gene family in human oral and vaginal candidiasis. Microbiology. 2008;154:3266–80.PubMedCrossRefGoogle Scholar
  76. 76.
    Lermann U, Morschhauser J. Secreted aspartic proteases are not required for invasion of reconstituted human epithelia by Candida albicans. Microbiology. 2008;154:3281–95.PubMedCrossRefGoogle Scholar
  77. 77.
    Naglik JR, Rodgers CA, Shirlaw PJ, et al. Differential expression of Candida albicans secreted aspartyl proteinase and phospholipase B genes in humans correlates with active oral and vaginal infections. J Infect Dis. 2003;188:469–79.PubMedCrossRefGoogle Scholar
  78. 78.
    Naglik JR, Newport G, White TC, et al. In vivo analysis of secreted aspartyl proteinase expression in human oral candidiasis. Infect Immun. 1999;67:2482–90.PubMedGoogle Scholar
  79. 79.
    Gelani V, Fernandes AP, Gasparoto TH, et al. The role of toll-like receptor 2 in the recognition of Aggregatibacter actinomycetemcomitans. J Periodontol. 2009;80:2010–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Kumar CP, Kumar SS, Menon T. Phospholipase and proteinase activities of clinical isolates of Candida from immunocompromised patients. Mycopathologia. 2006;161:213–8.PubMedCrossRefGoogle Scholar
  81. 81.
    Ghannoum MA. Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev. 2000;13:122–43.PubMedCrossRefGoogle Scholar
  82. 82.
    Gacser A, Trofa D, Schafer W, Nosanchuk JD. Targeted gene deletion in Candida parapsilosis demonstrates the role of secreted lipase in virulence. J Clin Invest. 2007;117:3049–58.PubMedCrossRefGoogle Scholar
  83. 83.
    Naglik JR, Moyes D. Epithelial cell innate response to Candida albicans. Adv Dent Res. 2011;23:50–5.PubMedCrossRefGoogle Scholar
  84. 84.
    Moyes DL, Naglik JR. Mucosal immunity and Candida albicans infection. Clin Dev Immunol. 2011;2011:346307.PubMedCrossRefGoogle Scholar
  85. 85.
    •• Moyes DL, Runglall M, Murciano C, et al. A biphasic innate immune MAPK response discriminates between the yeast and hyphal forms of Candida albicans in epithelial cells. Cell Host Microbe. 2010;8:225–35. Identification of an epithelial signalling mechanism that enables discrimination between yeast and hyphal forms of C. albicans, potentially representing adanger responsepathway critical in discriminating between the commensal and pathogenic forms of this fungus.PubMedCrossRefGoogle Scholar
  86. 86.
    Murciano C, Moyes DL, Runglall M, et al. Candida albicans cell wall glycosylation may be indirectly required for activation of epithelial cell proinflammatory responses. Infect Immun. 2011;79:4902–11.PubMedCrossRefGoogle Scholar
  87. 87.
    de Koning HD, Rodijk-Olthuis D, van Vlijmen-Willems IM, et al. A comprehensive analysis of pattern recognition receptors in normal and inflamed human epidermis: upregulation of dectin-1 in psoriasis. J Invest Dermatol. 2010;130:2611–20.PubMedCrossRefGoogle Scholar
  88. 88.
    Cheng SC, van de Veerdonk FL, Lenardon M, et al. The dectin-1/inflammasome pathway is responsible for the induction of protective T-helper 17 responses that discriminate between yeasts and hyphae of Candida albicans. J Leuk Biol. 2011;90(2):357–66.CrossRefGoogle Scholar
  89. 89.
    Moyes DL, Murciano C, Runglall M, et al. Candida albicans yeast and hyphae are discriminated by MAPK signaling in vaginal epithelial cells. PLoS One. 2011;6:e26580.PubMedCrossRefGoogle Scholar
  90. 90.
    Pukkila-Worley R, Ausubel FM, Mylonakis E. Candida albicans infection of Caenorhabditis elegans induces antifungal immune defenses. PLoS Pathog. 2011;7:e1002074.PubMedCrossRefGoogle Scholar
  91. 91.
    • Guma M, Stepniak D, Shaked H, et al. Constitutive intestinal NF-kappaB does not trigger destructive inflammation unless accompanied by MAPK activation. J Exp Med. 2011;208:1889–900. Demonstrates that MAPK-p38 signalling may be required for epithelial recognition ofpathogenicmicrobes and to initiate inflammatory responses.PubMedCrossRefGoogle Scholar
  92. 92.
    • Weindl G, Naglik JR, Kaesler S, et al. Human epithelial cells establish direct antifungal defense through TLR4-mediated signalling. J Clin Invest. 2007;117:3664–72. The first description of a PMN-dependent, TLR4-mediated protective mechanism at epithelial surfaces that may provide significant insights into how Candida infections are managed and controlled in the oral mucosa.PubMedGoogle Scholar
  93. 93.
    Hornef MW, Bogdan C. The role of epithelial Toll-like receptor expression in host defense and microbial tolerance. J Endotoxin Res. 2005;11:124–8.PubMedGoogle Scholar
  94. 94.
    Netea MG, Brown GD, Kullberg BJ, Gow NAR. An integrated model of the recognition of Candida albicans by the innate immune system. Nat Rev Microbiol. 2008;6:67–78.PubMedCrossRefGoogle Scholar
  95. 95.
    Hoyer LL, Scherer S, Shatzman AR, Livi GP. Candida albicans ALS1: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol. 1995;15:39–54.PubMedCrossRefGoogle Scholar
  96. 96.
    Zhu W, Phan QT, Boontheung P, et al. EGFR and HER2 receptor kinase signaling mediate epithelial cell invasion by Candida albicans during oropharyngeal infection. Proc Natl Acad Sci U S A. 2012;109:14194–9.PubMedCrossRefGoogle Scholar
  97. 97.
    Fu Y, Luo G, Spellberg BJ, et al. Gene overexpression/suppression analysis of candidate virulence factors of Candida albicans. Eukaryot Cell. 2008;7:483–92.PubMedCrossRefGoogle Scholar
  98. 98.
    Gale CA, Bendel CM, McClellan M, et al. Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1. Science. 1998;279:1355–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Mukherjee PK, Seshan KR, Leidich SD, et al. Reintroduction of the PLB1 gene into Candida albicans restores virulence in vivo. Microbiology. 2001;147:2585–97.PubMedGoogle Scholar
  100. 100.
    Schofield DA, Westwater C, Warner T, Balish E. Differential Candida albicans lipase gene expression during alimentary tract colonization and infection. FEMS Microbiol Lett. 2005;244:359–65.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Julian R. Naglik
    • 1
  • Shirley X. Tang
    • 1
  • David L. Moyes
    • 1
  1. 1.Department of Oral Immunology, Clinical and Diagnostic Science GroupKing’s College LondonLondonUK

Personalised recommendations