Current Fungal Infection Reports

, Volume 4, Issue 1, pp 17–22 | Cite as

Recent Advances in the Detection of Neonatal Candidiasis

  • Laura Corbin Downey
  • P. Brian SmithEmail author
  • Daniel K. BenjaminJr.
  • Michael Cohen-Wolkowiez


Neonatal candidiasis is serious and often fatal. Blood culture, the standard for diagnosis, has a sensitivity of 50% or less, and isolate speciation and susceptibility takes several days. This review explores recent advances in Candida detection using various diagnostic strategies.


Diagnosis Neonate Candida 



Dr. Benjamin receives support from the United States Government for his work in pediatric and neonatal clinical pharmacology (1R01HD057956-02, 1R01FD003519-01, 1U10-HD45962-06, 1K24HD058735-01, and Government Contract HHSN267200700051C), the nonprofit organization Thrasher Research Foundation for his work in neonatal candidiasis (, and from industry for neonatal and pediatric drug development ( Dr. Smith received support from NICHD 1K23HD060040-01.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Stoll BJ, Hansen N, Fanaroff AA, et al.: Late-onset sepsis in very low birth weight neonates: the experience of the NICHD Neonatal Research Network. Pediatrics 2002, 110:285–291.CrossRefPubMedGoogle Scholar
  2. 2.
    Benjamin DK Jr, Stoll BJ, Fanaroff AA, et al.: Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 2006, 117:84–92.CrossRefPubMedGoogle Scholar
  3. 3.
    Cotten CM, McDonald S, Stoll B, et al.: The association of third-generation cephalosporin use and invasive candidiasis in extremely low birth-weight infants. Pediatrics 2006, 118:717–722.CrossRefPubMedGoogle Scholar
  4. 4.
    Saiman L, Ludington E, Pfaller M, et al.: Risk factors for candidemia in neonatal intensive care unit patients. The National Epidemiology of Mycosis Survey study group. Pediatr Infect Dis J 2000, 19:319–324.CrossRefPubMedGoogle Scholar
  5. 5.
    Feja KN, Wu F, Roberts K, et al.: Risk factors for candidemia in critically ill infants: a matched case-control study. J Pediatr 2005, 147:156–161.CrossRefPubMedGoogle Scholar
  6. 6.
    Stoll BJ, Gordon T, Korones SB, et al.: Late-onset sepsis in very low birth weight neonates: a report from the National Institute of Child Health and Human Development Neonatal Research Network. J Pediatr 1996, 129:63–71.CrossRefPubMedGoogle Scholar
  7. 7.
    Benjamin DK, DeLong E, Cotten CM, et al.: Mortality following blood culture in premature infants: increased with Gram-negative bacteremia and candidemia, but not Gram-positive bacteremia. J Perinatol 2004, 24:175–180.CrossRefPubMedGoogle Scholar
  8. 8.
    Stoll BJ, Hansen NI, Adams-Chapman I, et al.: Neurodevelopmental and growth impairment among extremely low-birth-weight infants with neonatal infection. JAMA 2004, 292:2357–2365.CrossRefPubMedGoogle Scholar
  9. 9.
    Friedman S, Richardson SE, Jacobs SE, O’Brien K: Systemic Candida infection in extremely low birth weight infants: short term morbidity and long term neurodevelopmental outcome. Pediatr Infect Dis J 2000, 19:499–504.CrossRefPubMedGoogle Scholar
  10. 10.
    Mittal M, Dhanireddy R, Higgins RD: Candida sepsis and association with retinopathy of prematurity. Pediatrics 1998, 101:654–657.CrossRefPubMedGoogle Scholar
  11. 11.
    Kremer I, Naor N, Davidson S, et al.: Systemic candidiasis in babies with retinopathy of prematurity. Graefes Arch Clin Exp Ophthalmol 1992, 230:592–594.CrossRefPubMedGoogle Scholar
  12. 12.
    Kaufman D: Strategies for prevention of neonatal invasive candidiasis. Semin Perinatol 2003, 27:414–424.CrossRefPubMedGoogle Scholar
  13. 13.
    Malloy PJ, Zhao X, Madani ND, Feldman D: Cloning and expression of the gene from Candida albicans that encodes a high-affinity corticosteroid-binding protein. Proc Natl Acad Sci U S A 1993, 90:1902–1906.CrossRefPubMedGoogle Scholar
  14. 14.
    Botas CM, Kurlat I, Young SM, Sola A: Disseminated candidal infections and intravenous hydrocortisone in preterm infants. Pediatrics 1995, 95:883–887.PubMedGoogle Scholar
  15. 15.
    Pera A, Byun A, Gribar S, et al.: Dexamethasone therapy and Candida sepsis in neonates less than 1250 grams. J Perinatol 2002, 22:204–208.CrossRefPubMedGoogle Scholar
  16. 16.
    Chapman RL, Faix RG: Persistently positive cultures and outcome in invasive neonatal candidiasis. Pediatr Infect Dis J 2000, 19:822–827.CrossRefPubMedGoogle Scholar
  17. 17.
    Berenguer J, Buck M, Witebsky F, et al.: Lysis-centrifugation blood cultures in the detection of tissue-proven invasive candidiasis. Disseminated versus single-organ infection. Diagn Microbiol Infect Dis 1993, 17:103–109.CrossRefPubMedGoogle Scholar
  18. 18.
    Fernandez J, Erstad BL, Petty W, Nix DE: Time to positive culture and identification for Candida blood stream infections. Diagn Microbiol Infect Dis 2009, 64:402–407.CrossRefPubMedGoogle Scholar
  19. 19.
    Shepard JR, Merz WG, Gherna M, et al.: Evaluation of yeast traffic light PNA FISH™ for detection of high prevalence Candida species. Poster presented at the 107th American Society for Microbiology General Meeting. Toronto, Canada; May 21–25, 2007.Google Scholar
  20. 20.
    Makhoul IR, Kassis I, Smolkin T, et al.: Review of 49 neonates with acquired fungal sepsis: further characterization. Pediatrics 2001, 107:61–66.CrossRefPubMedGoogle Scholar
  21. 21.
    Guida JD, Kunig AM, Leef KH, et al.: Platelet count and sepsis in very low birth weight neonates: is there an organism-specific response? Pediatrics 2003, 111:1411–1415.CrossRefPubMedGoogle Scholar
  22. 22.
    Manzoni P, Mostert M, Galletto P, et al.: Is thrombocytopenia suggestive of organism- specific response in neonatal sepsis? Pediatr Int 2009, 51:206–210.CrossRefPubMedGoogle Scholar
  23. 23.
    Lunel FM, Mennink-Kersten MA, Ruegebrink D, et al.: Value of Candida serum markers in patients with invasive candidiasis after myeloablative chemotherapy. Diagn Microbiol Infect Dis 2009, 64:408–415.CrossRefPubMedGoogle Scholar
  24. 24.
    • Oliveri S, Trovato L, Betta P, et al.: Experience with the Platelia Candida ELISA for the diagnosis of invasive candidosis in neonatal patients. Clin Microbiol Infect 2008, 14:391–393. This is one of the few recent studies on detection of neonatal candidiasis. While just a preliminary study, it suggests the possibility of mannan detection as a helpful tool in the diagnosis of candidemia in select neonates.CrossRefPubMedGoogle Scholar
  25. 25.
    Verduyn Lunel FM, Donnelly JP, van der Lee HA, et al.: Circulating Candida-specific anti-mannan antibodies precede invasive candidiasis in patients undergoing myelo- ablative chemotherapy. Clin Microbiol Infect 2009, 15:380–386.CrossRefPubMedGoogle Scholar
  26. 26.
    Alam FF, Mustafa AS, Khan ZU: Comparative evaluation of (1, 3)-beta-D-glucan, mannan and anti-mannan antibodies, and Candida species-specific snPCR in patients with candidemia. BMC Infect Dis 2007, 7:103.CrossRefPubMedGoogle Scholar
  27. 27.
    Loeffler J, Hebart H, Cox P, et al.: Nucleic acid sequence-based amplification of Aspergillus RNA in blood samples. J Clin Microbiol 2001, 39:1626–1629.CrossRefPubMedGoogle Scholar
  28. 28.
    Khlif M, Mary C, Sellami H, et al.: Evaluation of nested and real-time PCR assays in the diagnosis of candidaemia. Clin Microbiol Infect 2009, 15:656–661.CrossRefPubMedGoogle Scholar
  29. 29.
    Dierkes C, Ehrenstein B, Siebig S, et al.: Clinical impact of a commercially available multiplex PCR system for rapid detection of pathogens in patients with presumed sepsis. BMC Infect Dis 2009, 9:126.CrossRefPubMedGoogle Scholar
  30. 30.
    Lehmann LE, Hunfeld KP, Emrich T, et al.: A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples. Med Microbiol Immunol 2008, 197:313–324.CrossRefPubMedGoogle Scholar
  31. 31.
    Dunyach C, Bertout S, Phelipeau C, et al.: Detection and identification of Candida spp. in human serum by LightCycler real-time polymerase chain reaction. Diagn Microbiol Infect Dis 2008, 60:263–271.CrossRefPubMedGoogle Scholar
  32. 32.
    Wellinghausen N, Siegel D, Winter J, Gebert S: Rapid diagnosis of candidaemia by real- time PCR detection of Candida DNA in blood samples. J Med Microbiol 2009, 58:1106–1111.CrossRefPubMedGoogle Scholar
  33. 33.
    Landry ML, Garner R, Ferguson D: Real-time nucleic acid sequence-based amplification using molecular beacons for detection of enterovirus RNA in clinical specimens. J Clin Microbiol 2005, 43:3136–3139.CrossRefPubMedGoogle Scholar
  34. 34.
    Rutjes SA, Italiaander R, van den Berg HH, et al.: Isolation and detection of enterovirus RNA from large-volume water samples by using the NucliSens miniMAG system and real-time nucleic acid sequence-based amplification. Appl Environ Microbiol 2005, 71:3734–3740.CrossRefPubMedGoogle Scholar
  35. 35.
    Borst A, Leverstein-Van Hall MA, Verhoef J, Fluit AC: Detection of Candida spp. in blood cultures using nucleic acid sequence-based amplification (NASBA). Diagn Microbiol Infect Dis 2001, 39:155–160.CrossRefPubMedGoogle Scholar
  36. 36.
    Widjojoatmodjo MN, Borst A, Schukkink RA, et al.: Nucleic acid sequence-based amplification (NASBA) detection of medically important Candida species. J Microbiol Methods 1999, 38:81–90.CrossRefPubMedGoogle Scholar
  37. 37.
    • Zhao Y, Park S, Kreiswirth BN, et al.: Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J Clin Microbiol 2009, 47:2067–2078. This article uses a known technology in a new way; it holds some promise in becoming a useful tool in the diagnosis of candidemia.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Laura Corbin Downey
    • 1
  • P. Brian Smith
    • 1
    • 2
    Email author
  • Daniel K. BenjaminJr.
    • 1
  • Michael Cohen-Wolkowiez
    • 1
  1. 1.Department of Pediatrics and Duke Clinical Research InstituteDuke University Medical CenterDurhamUSA
  2. 2.Duke Clinical Research InstituteDurhamUSA

Personalised recommendations