Advertisement

Development of a neutralization assay based on the pseudotyped Chikungunya virus of a Korean isolate

  • Woo-Chang Chung
  • Kwang Yeon Hwang
  • Suk-Jo Kang
  • Jae-Ouk Kim
  • Moon Jung SongEmail author
Article

Abstract

The Chikungunya virus (CHIKV) belongs to the Alphavirus genus of Togaviridae family and contains a positive-sense single stranded RNA genome. InfeCtion by this virus mainly causes sudden high fever, rashes, headache, and severe joint pain that can last for several months or years. CHIKV, a mosquito-borne arbovirus, is considered a re-emerging pathogen that has become one of the most pressing global health concerns due to a rapid increase in epidemics. Because handling of CHIKV is restricted to Biosafety Level 3 (BSL-3) facilities, the evaluation of prophylactic vaccines or antivirals has been substantially hampered. In this study, we first identified the whole structural polyprotein sequence of a CHIKV strain isolated in South Korea (KNIH/2009/77). Phylogenetic analysis showed that this sequence clustered within the East/Central/South African CHIKV genotype. Using this sequence information, we constructed a CHIKV-pseudotyped lentivirus expressing the structural polyprotein of the Korean CHIKV isolate (CHIKVpseudo) and dual reporter genes of green fluorescence protein and luciferase. We then developed a pseudovirus-based neutralization assay (PBNA) using CHIKVpseudo. Results from this assay compared to those from the conventional plaque reduction neutralization test showed that our PBNA was a reliable and rapid method to evaluate the efficacy of neutralizing antibodies. More importantly, the neutralizing activities of human sera from CHIKV-infected individuals were quantitated by PBNA using CHIKV-pseudo. Taken together, these results suggest that our PBNA for CHIKV may serve as a useful and safe method for testing the neutralizing activity of antibodies against CHIKV in BSL-2 facilities.

Keywords

Chikungunya virus Korean isolate Pseudovirus Neutralization assay Human serum 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This research was supported by a grant (16172MFDS272) from the Ministry of Food and Drug Safety in 2016–2018, the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A2B6001363), and a grant from Korea Ministry of Health and Welfare (HI15C2971). The CHIKV strain isolated in Korea (KNIH/2009/77) was obtained from the National Culture Collection for Pathogens, Republic of Korea. The Luc2P-pLVX-IRES-ZsGreen1 plasmid for CHIKVpseudo was a kind gift from Dr. Nam-Hyuk Cho at Seoul National University, Republic of Korea. Human serum samples used in this paper were originally collected as part of the Dengue Vaccine Initiative (DVI) study conducted in Ouagadougou, Burkina Faso, by Centre MURAZ and AGIR.

References

  1. Azami, N.A.M., Moi, M.L., and Takasaki, T. 2016. Neutralization assay for chikungunya virus infection: plaque reduction neutralization test. In Chikungunya Virus. pp. 273–282. Springer.Google Scholar
  2. Bréhin, A.C., Rubrecht, L., Navarro-Sanchez, M.E., Maréchal, V., Frenkiel, M.P., Lapalud, P., Laune, D., and Desprès, P. 2008. Production and characterization of mouse monoclonal antibodies reactive to Chikungunya envelope E2 glycoprotein. Virology371, 185–195.CrossRefGoogle Scholar
  3. Carleton, M., Lee, H., Mulvey, M., and Brown, D.T. 1997. Role of glycoprotein PE2 in formation and maturation of the Sindbis virus spike. J. Virol.71, 1558–1566.PubMedPubMedCentralGoogle Scholar
  4. Cha, G.W., Cho, J.E., Lee, E.J., Ju, Y.R., Han, M.G., Park, C., and Jeong, Y.E. 2013. Travel-associated Chikungunya cases in South Korea during 2009–2010. Osong Public Health Res. Perspect.4, 170–175.CrossRefGoogle Scholar
  5. Chang, K.S., Kim, G.-H., Ha, Y.R., Jeong, E.K., Kim, H.C., Klein, T.A., Shin, S.H., Kim, E.J., Jegal, S., Chung, S.J., et al. 2018. Monitoring and Control of Aedes albopictus, a Vector of Zika Virus, Near Residences of Imported Zika Virus Patients during 2016 in South Korea. Am. J. Med. Hyg.98, 166–172.CrossRefGoogle Scholar
  6. Fukumoto, Y., Obata, Y., Ishibashi, K., Tamura, N., Kikuchi, I., Aoyama, K., Hattori, Y., Tsuda, K., Nakayama, Y., and Yamaguchi, N. 2010. Cost-effective gene transfection by DNA compaction at pH 4.0 using acidified, long shelf-life polyethylenimine. Cytotechnology62, 73–82.CrossRefGoogle Scholar
  7. Gläsker, S., Lulla, A., Lulla, V., Couderc, T., Drexler, J.F., Liljeström, P., Lecuit, M., Drosten, C., Merits, A., and Kümmerer, B.M. 2013. Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout. Virol. J.10, 235.CrossRefGoogle Scholar
  8. Hu, D., Zhang, J., Wang, H., Liu, S., Yu, L., Sun, L., and Qu, Y. 2014. Chikungunya virus glycoproteins pseudotype with lentiviral vectors and reveal a broad spectrum of cellular tropism. PLoS One9, e110893.CrossRefGoogle Scholar
  9. Hwang, J.H. and Lee, C.S. 2015. The first imported case infected with chikungunya virus in Korea. Infect. Chemother.47, 55–59.CrossRefGoogle Scholar
  10. Jain, M., Rai, S., and Chakravarti, A. 2008. Chikungunya: a review. Trop. Doct.38, 70–72.CrossRefGoogle Scholar
  11. Jose, J., Snyder, J.E., and Kuhn, R.J. 2009. A structural and functional perspective of alphavirus replication and assembly. Fut. Microbiol.4, 837–856.CrossRefGoogle Scholar
  12. Kishishita, N., Takeda, N., Anuegoonpipat, A., and Anantapreecha, S. 2013. Development of a pseudotyped lentiviral vector-based neutralization assay for chikungunya virus infection. J. Clin. Microbiol.51, 1385–1395.CrossRefGoogle Scholar
  13. Kuo, S.C., Chen, Y.J., Wang, Y.M., Tsui, P.Y., Kuo, M.D., Wu, T.Y., and Lo, S.J. 2012. Cell-based analysis of Chikungunya virus E1 protein in membrane fusion. J. Biomed. Sci.19, 44.CrossRefGoogle Scholar
  14. Lee, H.J., Min, K.I., Park, K.H., Choi, H.J., Kim, M.K., Ahn, C.Y., Hong, Y.J., and Kim, Y.B. 2014. Comparison of JEV neutralization assay using pseudotyped JEV with the conventional plaque-reduction neutralization test. J. Microbiol.52, 435–440.CrossRefGoogle Scholar
  15. Li, L., Jose, J., Xiang, Y., Kuhn, R.J., and Rossmann, M.G. 2010. Structural changes of envelope proteins during alphavirus fusion. Nature468, 705.CrossRefGoogle Scholar
  16. Morrison, T.E. 2014. Re-emergence of chikungunya virus. J. Virol.88, 11644–11647.CrossRefGoogle Scholar
  17. Mulvey, M. and Brown, D.T. 1995. Involvement of the molecular chaperone BiP in maturation of Sindbis virus envelope glycoproteins. J. Virol.69, 1621–1627.PubMedPubMedCentralGoogle Scholar
  18. Noranate, N., Takeda, N., Chetanachan, P., Sittisaman, P., A-nuegoonpipat, A., and Anantapreecha, S. 2014. Characterization of chikungunya virus-like particles. PLoS One9, e108169.CrossRefGoogle Scholar
  19. Pal, P., Dowd, K.A., Brien, J.D., Edeling, M.A., Gorlatov, S., Johnson, S., Lee, I., Akahata, W., Nabel, G.J., Richter, M.K., et al. 2013. Development of a highly protective combination monoclonal antibody therapy against Chikungunya virus. PLoS Pathog.9, e1003312.CrossRefGoogle Scholar
  20. Powers, A.M. 2018. Vaccine and therapeutic options to control chikungunya virus. Clin. Microbiol. Rev.31, e00104–16.PubMedGoogle Scholar
  21. Powers, A.M., Brault, A.C., Tesh, R.B., and Weaver, S.C. 2000. Reemergence of Chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J. Gen. Virol.81, 471–479.CrossRefGoogle Scholar
  22. Rezza, G., Nicoletti, L., Angelini, R., Romi, R., Finarelli, A.C., Panning, M., Cordioli, P., Fortuna, C., Boros, S., Magurano, F., et al. 2007. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet370, 1840–1846.CrossRefGoogle Scholar
  23. Salvador, B., Zhou, Y., Michault, A., Muench, M.O., and Simmons, G. 2009. Characterization of Chikungunya pseudotyped viruses: Identification of refractory cell lines and demonstration of cellular tropism differences mediated by mutations in E1 glycoprotein. Virology393, 33–41.CrossRefGoogle Scholar
  24. Sam, I.C., Loong, S.K., Michael, J.C., Chua, C.L., Sulaiman, W.Y.W., Vythilingam, I., Chan, S.Y., Chiam, C.W., Yeong, Y.S., and Abu-Bakar, S. 2012. Genotypic and phenotypic characterization of Chikungunya virus of different genotypes from Malaysia. PLoS One7, e50476.CrossRefGoogle Scholar
  25. Schwartz, O. and Albert, M.L. 2010. Biology and pathogenesis of chikungunya virus. Nat. Rev. Microbiol.8, 491.CrossRefGoogle Scholar
  26. Snyder, A.J. and Mukhopadhyay, S. 2012. The alphavirus E3 glycoprotein functions in a clade-specific manner. J. Virol.86, 13609–13620.CrossRefGoogle Scholar
  27. Solignat, M., Gay, B., Higgs, S., Briant, L., and Devaux, C. 2009. Replication cycle of chikungunya: a re-emerging arbovirus. Virology393, 183–197.CrossRefGoogle Scholar
  28. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28, 2731–2739.CrossRefGoogle Scholar
  29. Tharmarajah, K., Mahalingam, S., and Zaid, A. 2017. Chikungunya: vaccines and therapeutics. F1000Res.6, 2114CrossRefGoogle Scholar
  30. Thiboutot, M.M., Kannan, S., Kawalekar, O.U., Shedlock, D.J., Khan, A.S., Sarangan, G., Srikanth, P., Weiner, D.B., and Muthumani, K. 2010. Chikungunya: a potentially emerging epidemic? PLoS Negl. Trop. Dis.4, e623.CrossRefGoogle Scholar
  31. Volk, S.M., Chen, R., Tsetsarkin, K.A., Adams, A.P., Garcia, T.I., Sall, A.A., Nasar, F., Schuh, A.J., Holmes, E.C., Higgs, S., et al. 2010. Genome-scale phylogenetic analyses of chikungunya virus reveal independent emergences of recent epidemics and various evolutionary rates. J. Virol.84, 6497–6504.CrossRefGoogle Scholar
  32. Voss, J.E., Vaney, M.C., Duquerroy, S., Vonrhein, C., Girard-Blanc, C., Crublet, E., Thompson, A., Bricogne, G., and Rey, F.A. 2010. Glycoprotein organization of Chikungunya virus particles revealed by X-ray crystallography. Nature468, 709–712.CrossRefGoogle Scholar
  33. Weaver, S.C., Osorio, J.E., Livengood, J.A., Chen, R., and Stinchcomb, D.T. 2012. Chikungunya virus and prospects for a vaccine. Expert. Rev. Vaccines11, 1087–1101.CrossRefGoogle Scholar
  34. Wichit, S., Hamel, R., Bernard, E., Talignani, L., Diop, F., Ferraris, P., Liegeois, F., Ekchariyawat, P., Luplertlop, N., and Surasombatpattana, P. 2017. Imipramine inhibits Chikungunya virus replication in human skin fibroblasts through interference with intracellular cholesterol trafficking. Sci. Rep.7, 3145.CrossRefGoogle Scholar
  35. Wu, J., Zhao, C., Liu, Q., Huang, W., and Wang, Y. 2017. Development and application of a bioluminescent imaging mouse model for Chikungunya virus based on pseudovirus system. Vaccine35, 6387–6394.CrossRefGoogle Scholar
  36. Yap, M.L., Klose, T., Urakami, A., Hasan, S.S., Akahata, W., and Rossmann, M.G. 2017. Structural studies of Chikungunya virus maturation. Proc. Natl. Acad. Sci. USA114, 13703–13707.CrossRefGoogle Scholar
  37. Yeom, J.S. 2017. Current status and outlook of mosquito-borne diseases in Korea. J. Korean Med. Assoc.60, 468–474.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2020

Authors and Affiliations

  • Woo-Chang Chung
    • 1
  • Kwang Yeon Hwang
    • 2
  • Suk-Jo Kang
    • 3
  • Jae-Ouk Kim
    • 4
  • Moon Jung Song
    • 1
    Email author
  1. 1.Virus-Host Interactions Laboratory, Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  2. 2.Structural Proteomics Laboratory, Department of Biosystems and Biotechnology, Division of Biotechnology, College of Life Sciences and BiotechnologyKorea UniversitySeoulRepublic of Korea
  3. 3.Department of Biological SciencesKorea Advanced Institute of Science and TechnologyDaejeonRepublic of Korea
  4. 4.Molecular Immunology, ScienceInternational Vaccine InstituteSeoulRepublic of Korea

Personalised recommendations