Advertisement

Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds

  • Lingmin Jiang
  • Chan Ju Lim
  • Song-Gun Kim
  • Jae Cheol Jeong
  • Cha Young Kim
  • Dae-Hyuk Kim
  • Suk Weon KimEmail author
  • Jiyoung LeeEmail author
Article
  • 34 Downloads

Abstract

Strain ATSA2T was isolated from surface-sterilized kimchi cabbage (Brassica rapa subsp. pekinensis) seeds and represents a novel bacterium based on the polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ATSA2T formed a lineage within genus Saccharibacillus and was most closely to Saccharibacillus deserti WLG055T (98.1%) and Saccharibacillus qingshengii H6T (97.9%). The whole-genome of ATSA2T comprised a 5,619,468 bp of circular chromosome with 58.4% G + C content. The DNA-DNA relatedness values between strain ATSA2T and its closely related type strains S. deserti WLJ055T and S. qingshengii H6T were 26.0% and 24.0%, respectively. Multiple gene clusters associated with plant growth promotion activities (stress response, nitrogen and phosphorus metabolism, and auxin biosynthesis) were annotated in the genome. Strain ATSA2T was Gram-positive, endospore-forming, facultatively anaerobic, and rod-shaped. It grew at 15–37°C (optimum 25°C), pH 6.0–10.0 (optimum pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum 1%). The major cellular fatty acids (> 10%) of strain ATSA2T were anteiso-C15:0 and C16:0. MK-7 was the major isoprenoid quinone. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, and three unknown glycolipids. Based on its phylogenetic, genomic, phenotypic, and chemotaxonomic features, strain ATSA2T is proposed to represent a novel species of genus Saccharibacillus, for which the name is Saccharibacillus brassicae sp. nov. The type strain is ATSA2T (KCTC 43072T = CCTCC AB 2019223T).

Keywords

Saccharibacillus brassicae taxonomy whole-genome sequence endophytic bacterium kimchi cabbage seeds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

This work was performed with the support of the KRIBB Research Initiative Program (KGM5281913).

Supplementary material

12275_2020_9346_MOESM1_ESM.pdf (341 kb)
Supplementary material, approximately 228 KB.

References

  1. Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569.CrossRefGoogle Scholar
  2. Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., de Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol.68, 461–466.CrossRefGoogle Scholar
  3. Collins, M.D., Shah, H.N., and Minnikin, D.E. 1980. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J. Appl. Bacteriol.48, 277–282.CrossRefGoogle Scholar
  4. Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol.39, 224–229.CrossRefGoogle Scholar
  5. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.57, 81–91.CrossRefGoogle Scholar
  6. Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98.Google Scholar
  7. Han, H., Gao, S., Wang, Q., He, L.Y., and Sheng, X.F. 2016. Saccharibacillus qingshengii sp. nov., isolated from a lead-cadmium tailing. Int. J. Syst. Evol. Microbiol.66, 4645–4649.CrossRefGoogle Scholar
  8. Hwang, S.H., Hwang, W.M., Kang, K. and Ahn, T.Y. 2019. Gramella fulva sp. nov., isolated from a dry surface of tidal flat. J. Microbiol.57, 23–29.CrossRefGoogle Scholar
  9. Jiang, L., Lim, C.J., Jeong, J.C., Kim, C.Y., Kim, D.H., Kim, S.W. and Lee, J. 2019. Whole-genome sequence data and analysis of Saccharibacillus sp. ATSA2 isolated from kimchi cabbage seeds. Data Brief26, 104465CrossRefGoogle Scholar
  10. Kämpfer, P., Busse, H.J., Kleinhagauer, T., McInroy, J.A., and Glaeser, S.P. 2016. Saccharibacillus endophyticus sp. nov., an endophyte of cotton. Int. J. Syst. Evol. Microbiol.66, 5134–5139.CrossRefGoogle Scholar
  11. Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. 2016. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.45, D353–D361.CrossRefGoogle Scholar
  12. Kim, I., Ghhetri, G., Kim, J., and Seo, T. 2019. Amnibacterium setariae sp. nov., an endophytic actinobacterium isolated from dried foxtail. Antonie van Leeuwenhoek DOI:  https://doi.org/10.1007/s10482-019-01302-7.CrossRefGoogle Scholar
  13. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol.64, 346–351.CrossRefGoogle Scholar
  14. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.CrossRefGoogle Scholar
  15. Lane, D.J. 1991. 16S/23S rRNA Sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. John Wiley and Sons, New York, USA.Google Scholar
  16. Lee, Y. and Jeon, C.O. 2017. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int. J. Syst. Evol. Microbiol.67, 4767–4772.CrossRefGoogle Scholar
  17. Lee, S.A., Kim, Y., Sang, M.K., Song, J., Kwon, S.W. and Weon, H.Y. 2019. Chryseolinea soli sp. nov., isolated from soil. J. Microbiol.57, 122–126.CrossRefGoogle Scholar
  18. Logan, N.A., Berge, O., Bishop, A.H., Busse, H.J., De Vos, P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M.S., et al. 2009. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int. J. Syst. Evol. Microbiol.59, 2114–2121.CrossRefGoogle Scholar
  19. Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.CrossRefGoogle Scholar
  20. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  21. Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol.56, 280–285.CrossRefGoogle Scholar
  22. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596.CrossRefGoogle Scholar
  23. Rivas, R., García-Fraile, P., Zurdo-Piñeiro, J.L., Mateos, P.F., Martínez-Molina, E., Bedmar, E.J., Sánchez-Raya, J., and Velazquez, E. 2008. Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int. J. Syst. Evol. Microbiol.58, 1850–1854.CrossRefGoogle Scholar
  24. Sasser, M. 2006. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). MIDI, Newark, DE, USA.Google Scholar
  25. Schumann, P. 2011. Peptidoglycan structure. Method Microbiol.38, 101–129.CrossRefGoogle Scholar
  26. Sun, J.Q., Wang, X.Y., Wang, L.J., Xu, L., Liu, M., and Wu, X.L. 2016. Saccharibacillus deserti sp. nov., isolated from desert soil. Int. J. Syst. Evol. Microbiol.66, 623–627.CrossRefGoogle Scholar
  27. Yang, S.Y., Liu, H., Liu, R., Zhang, K.Y., and Lai, R. 2009. Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. Int. J. Syst. Evol. Microbiol.59, 953–957.CrossRefGoogle Scholar
  28. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2020

Authors and Affiliations

  • Lingmin Jiang
    • 1
    • 2
  • Chan Ju Lim
    • 3
  • Song-Gun Kim
    • 1
  • Jae Cheol Jeong
    • 1
  • Cha Young Kim
    • 1
  • Dae-Hyuk Kim
    • 2
  • Suk Weon Kim
    • 1
    Email author
  • Jiyoung Lee
    • 1
    Email author
  1. 1.Korean Collection for Type Cultures, Biological Resource CenterKorea Research Institute of Bioscience and BiotechnologyJeongeupRepublic of Korea
  2. 2.Department of Bioactive MaterialsChonbuk National UniversityJeonjuRepublic of Korea
  3. 3.Research Institute of Biotechnology BreedingAsia Seed Co.IcheonRepublic of Korea

Personalised recommendations