Saccharibacillus brassicae sp. nov., an endophytic bacterium isolated from kimchi cabbage (Brassica rapa subsp. pekinensis) seeds
- 34 Downloads
Abstract
Strain ATSA2T was isolated from surface-sterilized kimchi cabbage (Brassica rapa subsp. pekinensis) seeds and represents a novel bacterium based on the polyphasic taxonomic approach. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ATSA2T formed a lineage within genus Saccharibacillus and was most closely to Saccharibacillus deserti WLG055T (98.1%) and Saccharibacillus qingshengii H6T (97.9%). The whole-genome of ATSA2T comprised a 5,619,468 bp of circular chromosome with 58.4% G + C content. The DNA-DNA relatedness values between strain ATSA2T and its closely related type strains S. deserti WLJ055T and S. qingshengii H6T were 26.0% and 24.0%, respectively. Multiple gene clusters associated with plant growth promotion activities (stress response, nitrogen and phosphorus metabolism, and auxin biosynthesis) were annotated in the genome. Strain ATSA2T was Gram-positive, endospore-forming, facultatively anaerobic, and rod-shaped. It grew at 15–37°C (optimum 25°C), pH 6.0–10.0 (optimum pH 8.0), and in the presence of 0–5% (w/v) NaCl (optimum 1%). The major cellular fatty acids (> 10%) of strain ATSA2T were anteiso-C15:0 and C16:0. MK-7 was the major isoprenoid quinone. The major polar lipids present were diphosphatidylglycerol, phosphatidylglycerol, and three unknown glycolipids. Based on its phylogenetic, genomic, phenotypic, and chemotaxonomic features, strain ATSA2T is proposed to represent a novel species of genus Saccharibacillus, for which the name is Saccharibacillus brassicae sp. nov. The type strain is ATSA2T (KCTC 43072T = CCTCC AB 2019223T).
Keywords
Saccharibacillus brassicae taxonomy whole-genome sequence endophytic bacterium kimchi cabbage seedsPreview
Unable to display preview. Download preview PDF.
Notes
Acknowledgments
This work was performed with the support of the KRIBB Research Initiative Program (KGM5281913).
Supplementary material
References
- Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E.E., et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods10, 563–569.CrossRefGoogle Scholar
- Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D.R., da Costa, M.S., Rooney, A.P., Yi, H., Xu, X.W., de Meyer, S., et al. 2018. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int. J. Syst. Evol. Microbiol.68, 461–466.CrossRefGoogle Scholar
- Collins, M.D., Shah, H.N., and Minnikin, D.E. 1980. A note on the separation of natural mixtures of bacterial menaquinones using reverse phase thin-layer chromatography. J. Appl. Bacteriol.48, 277–282.CrossRefGoogle Scholar
- Ezaki, T., Hashimoto, Y., and Yabuuchi, E. 1989. Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int. J. Syst. Bacteriol.39, 224–229.CrossRefGoogle Scholar
- Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.57, 81–91.CrossRefGoogle Scholar
- Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp. Ser.41, 95–98.Google Scholar
- Han, H., Gao, S., Wang, Q., He, L.Y., and Sheng, X.F. 2016. Saccharibacillus qingshengii sp. nov., isolated from a lead-cadmium tailing. Int. J. Syst. Evol. Microbiol.66, 4645–4649.CrossRefGoogle Scholar
- Hwang, S.H., Hwang, W.M., Kang, K. and Ahn, T.Y. 2019. Gramella fulva sp. nov., isolated from a dry surface of tidal flat. J. Microbiol.57, 23–29.CrossRefGoogle Scholar
- Jiang, L., Lim, C.J., Jeong, J.C., Kim, C.Y., Kim, D.H., Kim, S.W. and Lee, J. 2019. Whole-genome sequence data and analysis of Saccharibacillus sp. ATSA2 isolated from kimchi cabbage seeds. Data Brief26, 104465CrossRefGoogle Scholar
- Kämpfer, P., Busse, H.J., Kleinhagauer, T., McInroy, J.A., and Glaeser, S.P. 2016. Saccharibacillus endophyticus sp. nov., an endophyte of cotton. Int. J. Syst. Evol. Microbiol.66, 5134–5139.CrossRefGoogle Scholar
- Kanehisa, M., Furumichi, M., Tanabe, M., Sato, Y., and Morishima, K. 2016. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res.45, D353–D361.CrossRefGoogle Scholar
- Kim, I., Ghhetri, G., Kim, J., and Seo, T. 2019. Amnibacterium setariae sp. nov., an endophytic actinobacterium isolated from dried foxtail. Antonie van Leeuwenhoek DOI: https://doi.org/10.1007/s10482-019-01302-7.CrossRefGoogle Scholar
- Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol.64, 346–351.CrossRefGoogle Scholar
- Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol.33, 1870–1874.CrossRefGoogle Scholar
- Lane, D.J. 1991. 16S/23S rRNA Sequencing. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic Acid Techniques in Bacterial Systematic, pp. 115–175. John Wiley and Sons, New York, USA.Google Scholar
- Lee, Y. and Jeon, C.O. 2017. Cohnella algarum sp. nov., isolated from a freshwater green alga Paulinella chromatophora. Int. J. Syst. Evol. Microbiol.67, 4767–4772.CrossRefGoogle Scholar
- Lee, S.A., Kim, Y., Sang, M.K., Song, J., Kwon, S.W. and Weon, H.Y. 2019. Chryseolinea soli sp. nov., isolated from soil. J. Microbiol.57, 122–126.CrossRefGoogle Scholar
- Logan, N.A., Berge, O., Bishop, A.H., Busse, H.J., De Vos, P., Fritze, D., Heyndrickx, M., Kämpfer, P., Rabinovitch, L., Salkinoja-Salonen, M.S., et al. 2009. Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int. J. Syst. Evol. Microbiol.59, 2114–2121.CrossRefGoogle Scholar
- Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.CrossRefGoogle Scholar
- Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
- Na, S.I., Kim, Y.O., Yoon, S.H., Ha, S.M., Baek, I., and Chun, J. 2018. UBCG: Up-to-date bacterial core gene set and pipeline for phylogenomic tree reconstruction. J. Microbiol.56, 280–285.CrossRefGoogle Scholar
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596.CrossRefGoogle Scholar
- Rivas, R., García-Fraile, P., Zurdo-Piñeiro, J.L., Mateos, P.F., Martínez-Molina, E., Bedmar, E.J., Sánchez-Raya, J., and Velazquez, E. 2008. Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. Int. J. Syst. Evol. Microbiol.58, 1850–1854.CrossRefGoogle Scholar
- Sasser, M. 2006. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). MIDI, Newark, DE, USA.Google Scholar
- Schumann, P. 2011. Peptidoglycan structure. Method Microbiol.38, 101–129.CrossRefGoogle Scholar
- Sun, J.Q., Wang, X.Y., Wang, L.J., Xu, L., Liu, M., and Wu, X.L. 2016. Saccharibacillus deserti sp. nov., isolated from desert soil. Int. J. Syst. Evol. Microbiol.66, 623–627.CrossRefGoogle Scholar
- Yang, S.Y., Liu, H., Liu, R., Zhang, K.Y., and Lai, R. 2009. Saccharibacillus kuerlensis sp. nov., isolated from a desert soil. Int. J. Syst. Evol. Microbiol.59, 953–957.CrossRefGoogle Scholar
- Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.CrossRefGoogle Scholar