Advertisement

Vibrio parahaemolyticus cqsA controls production of quorum sensing signal molecule 3-hydroxyundecan-4-one and regulates colony morphology

  • Kui WuEmail author
  • Yangyun Zheng
  • Qingping WuEmail author
  • Haiying Chen
  • Songzhe Fu
  • Biao Kan
  • Yongyan Long
  • Xiansheng Ni
  • Junling Tu
Article
  • 10 Downloads

Abstract

In order to adapt to different environments, Vibrio parahaemolyticus employed a complicated quorum sensing system to orchestrate gene expression and diverse colony morphology patterns. In this study, the function of the putative quorum sensing signal synthase gene cqsA (VPA0711 in V. Parahaemolyticus strain RIMD2210633 genome) was investigated. The cloning and expression of V. parahaemolyticus cqsA in Escherichia coli system induced the production of a new quorum sensing signal that was found in its culture supernatant. The signal was purified by high performance liquid chromatography methods and determined to be 3-hydroxyundecan- 4-one by indirect and direct mass spectra assays. The deletion of cqsA in RIMD2210633 changed V. parahaemolyticus colony morphology from the classical ‘fried-egg’ shape (thick and opaque in the center, while thin and translucent in the edge) of the wild-type colony to a ‘pancake’ shape (no significant difference between the centre and the edge) of the cqsA deleted colony. This morphological change could be restored by complementary experiment with cqsA gene or the signal extract. In addition, the expression of opaR, a well-known quorum sensing regulatory gene, could be up-regulated by cqsA deletion. Our results suggested that V. parahaemolyticus used cqsA to produce 3-hydroxyundecan-4-one signal and thereby regulated colony morphology and other quorum sensing-associated behaviors.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 31760492), the Natural Science Foundation of Guangdong Province (No. S2012030006235), and the Science and Technology Planning Project from Health and Family Planning Commission of Jiangxi Province (No. 20172008).

Supplementary material

12275_2019_9379_MOESM1_ESM.pdf (206 kb)
Supplementary material, approximately 206 KB.

References

  1. Bassler, B.L., Wright, M., Showalter, R.E., and Silverman, M.R. 1993. Intercellular signaling in Vibrio harveyi: sequence and function of genes regulating expression of luminescence. Mol. Microbiol. 9, 773–788.CrossRefGoogle Scholar
  2. Boles, B.R. and McCarter, L.L. 2002. Vibrio parahaemolyticus scr- ABC, a novel operon affecting swarming and capsular polysaccharide regulation. J. Bacteriol. 184, 5946–5954.CrossRefGoogle Scholar
  3. Chen, Z., Wang, L., Zhang, Y., Feng, J., Yang, R., Chang, D., An, L., Liu, C., and Zhou, D. 2014. Establishment of a method for gene complementation in Vibrio parahaemolyticus. J. South Med. Univ. 34, 70–74.Google Scholar
  4. Duan, F. and March, J.C. 2010. Engineered bacterial communication prevents Vibrio cholerae virulence in an infant mouse model. Proc. Natl. Acad. Sci. USA 107, 11260–11264.CrossRefGoogle Scholar
  5. Enos-Berlage, J.L. and McCarter, L.L. 2000. Relation of capsular polysaccharide production and colonial cell organization to colony morphology in Vibrio parahaemolyticus. J. Bacteriol. 182, 5513–5520.CrossRefGoogle Scholar
  6. Ferreira, R.B.R., Antunes, L.C.M., Greenberg, E.P., and McCarter, L.L. 2007. Vibrio parahaemolyticus ScrC modulates cyclic dimeric GMP regulation of gene expression relevant to growth on surfaces. J. Bacteriol. 190, 851–860.CrossRefGoogle Scholar
  7. Fuqua, W.C. and Winans, S.C. 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulator. J. Bacteriol. 176, 269–275.CrossRefGoogle Scholar
  8. Gode-Potratz, C.J., Chodur, D.M., and McCarter, L.L. 2010. Calcium and iron regulate swarming and type III secretion in Vibrio parahaemolyticus. J. Bacteriol. 192, 6025–6038.CrossRefGoogle Scholar
  9. Gode-Potratz, C.J. and McCarter, L.L. 2011. Quorum sensing and silencing in Vibrio parahaemolyticus. J. Bacteriol. 193, 4224–4237.CrossRefGoogle Scholar
  10. Guvener, Z.T. and McCarter, L.L. 2003. Multiple regulators control capsular polysaccharide production in Vibrio parahaemolyticus. J. Bacteriol. 185, 5431–5441.CrossRefGoogle Scholar
  11. Henke, J.M. and Bassler, B.L. 2004a. Three parallel quorum-sensing systems regulate gene expression in Vibrio harveyi. J. Bacteriol. 186, 6902–6914.CrossRefGoogle Scholar
  12. Henke, J.M. and Bassler B.L. 2004b. Quorum sensing regulates type III secretion in Vibrio harveyi and Vibrio parahaemolyticus. J. Bacteriol. 186, 3794–3805.CrossRefGoogle Scholar
  13. Higgins, D.A., Pomianek, M.E., Kraml, C.M., Taylor, R.K., Semmelhack, M.F., and Bassler, B.L. 2007. The major Vibrio cholerae autoinducer and its role in virulence factor production. Nature 450, 883–886.CrossRefGoogle Scholar
  14. Jahan, N., Potter, J.A., Sheikh, M.A., Botting, C.H., Shirran, S.L., Westwood, N.J., and Taylor, G.L. 2009. Insights into the biosynthesis of the Vibrio cholerae major autoinducer CAI-1 from the crystal structure of the PLP-dependent enzyme CqsA. J. Mol. Biol. 392, 763–773.CrossRefGoogle Scholar
  15. Kelly, R.C., Bolitho, M.E., Higgins, D.A., Lu, W., Ng, W., Jeffrey, P.D., Rabinowitz, J.D., Semmelhack, M.F., Hughson, F.M., and Bassler, B.L. 2009. The Vibrio cholerae quorum-sensing autoinducer CAI-1: analysis of the biosynthetic enzyme CqsA. Nat. Chem. Biol. 5, 891–895.CrossRefGoogle Scholar
  16. Kernell Burke, A., Guthrie, L.T.C., Modise, T., Cormier, G., Jensen, R.V., McCarter, L.L., and Stevens, A.M. 2015. OpaR controls a network of downstream transcription factors in Vibrio parahaemolyticus BB22OP. PLoS One 10, e0121863.CrossRefGoogle Scholar
  17. Liu, X., Gao, H., Yang, L., Zhang, Y., Tan, Y., Guo, Z., Huang, X., Yang, R., and Zhou, D. 2011. Establishment of a suicide vector-based gene knockout method in studies of Vibrio parahaemolyticus. Acta Lab. Anim. Sci. Sin. 19, 188–192.Google Scholar
  18. Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and 2-ΔΔCT method. Methods 25, 402–408.CrossRefGoogle Scholar
  19. Makino, K., Oshima, K., Kurokawa, K., Yokoyama, K., Uda, T., Tagomori, K., Iijima, Y., Najima, M., Nakano, M., Yamashita, A., et al. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V. Cholerae. Lancet 361, 743–749.CrossRefGoogle Scholar
  20. McCarter, L.L. 1998. OpaR, a homolog of Vibrio harveyi LuxR, controls opacity of Vibrio parahaemolyticus. J. Bacteriol. 180, 3166–3173.PubMedPubMedCentralGoogle Scholar
  21. McCarter, L.L. 2004. Dual flagellar systems enable motility under different circumstances. J. Mol. Microbiol. Biotechnol. 7, 18–29.CrossRefGoogle Scholar
  22. McCarter, L.L. and Silverman, M. 1990. Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus. Mol. Microbiol. 4, 1057–1062.CrossRefGoogle Scholar
  23. Miller, M.B., Skorupski, K., Lenz, D.H., Taylor, R.K., and Bassler, B.L. 2002. Parallel quorum sensing systems converge to regulate virulence in Vibrio cholerae. Cell 110, 303–314.CrossRefGoogle Scholar
  24. Milton, D.L. 2006. Quorum sensing in vibrios: complexity for diversification. Int. J. Med. Microbiol. 296, 61–71.CrossRefGoogle Scholar
  25. Milton, D.L., Chalker, V.J., Kirke, D., Hardman, A., Camara, M., and Williams, P. 2001. The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N-(3-hydroxyhexanoyl) homoserine lactone and N-hexanoylhomoserine lactone. J. Bacteriol. 183, 3537–3547.CrossRefGoogle Scholar
  26. Ng, W., Perez, L.J., Wei, Y., Kraml, C., Semmelhack, M.F., and Bassler, B.L. 2011. Signal production and detection specificity in Vibrio CqsA/CqsS quorum-sensing systems. Mol. Microbiol. 79, 1407–1417.CrossRefGoogle Scholar
  27. Philippe, N., Alcaraz, J.P., Coursange, E., Geiselmann, J., and Schneider, D. 2004. Improvement of pCVD442, a suicide plasmid for gene allele exchange in bacteria. Plasmid 51, 246–255.CrossRefGoogle Scholar
  28. Spirig, T., Tiaden, A., Kiefer, P., Buchrieser, C., Vorholt, J.A., and Hilbi, H. 2008. The Legionella autoinducer synthase LqsA produces an a-hydroxyketone signaling molecule. J. Biol. Chem. 283, 18113-18123.CrossRefGoogle Scholar
  29. Su, Y. and Liu, C. 2007. Vibrio parahaemolyticus: a concern of seafood safety. Food Microbiol. 24, 549–558.CrossRefGoogle Scholar
  30. Trimble, M.J. and McCarter, L.L. 2011. Bis-(3??-5??)-cyclic dimeric GMP-linked quorum sensing controls swarming in Vibrio parahaemolyticus. Proc. Natl. Acad. Sci. USA 108, 18079–18084.CrossRefGoogle Scholar
  31. Wang, L., Zhou, D., Mao, P., Zhang, Y., Hou, J., Hu, Y., Li, J., Hou, S., Yang, R., Wang, R., et al. 2013. Cell density- and quorum sensing- dependent expression of type VI secretion 2 in Vibrio parahaemolyticus. PLoS One 8, e73363.Google Scholar
  32. Wu, Q., Wu, K., Ye, Y., Dong, X., and Zhang, J. 2009. Quorum sensing and its roles in pathogenesis among animal-associated pathogens - a review. Acta. Microbiol. Sin. 49, 853–858.Google Scholar
  33. Wu, K., Wu, Q., Zhang, J., and Xu, X. 2015. Research on prokaryotic expression of Vibrio parahaemolyticus and N-acyl-homoserine lactone identification. Mod. Food Sci. Technol. 31, 29–35.Google Scholar
  34. Zhang, Y., Qiu, Y., Tan, Y., Guo, Z., Yang, R., and Zhou, D. 2012. Transcriptional regulation of opaR, qrr2-4 and aphA by the master quorum- sensing regulator OpaR in Vibrio parahaemolyticus. PLoS One 7, e34622.Google Scholar
  35. Zhu, J. and Mekalanos, J.J. 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae. Dev. Cell 5, 647–656.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Kui Wu
    • 1
    • 2
    • 4
    Email author
  • Yangyun Zheng
    • 1
  • Qingping Wu
    • 2
    Email author
  • Haiying Chen
    • 1
  • Songzhe Fu
    • 3
  • Biao Kan
    • 4
  • Yongyan Long
    • 1
    • 4
  • Xiansheng Ni
    • 1
  • Junling Tu
    • 1
  1. 1.The Collaboration Unit for Field Epidemiology of State Key Laboratory for Infectious Disease Prevention and ControlNanchang Center for Disease Control and PreventionNanchangP. R. China
  2. 2.State Key Laboratory of Applied Microbiology South ChinaGuangdong Institute of MicrobiologyGuangzhouP. R. China
  3. 3.College of Marine Technology and EnvironmentDalian Ocean UniversityDalianP. R. China
  4. 4.State Key Laboratory for Infectious Disease Prevention and ControlNational Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and PreventionBeijingP. R. China

Personalised recommendations