Advertisement

Journal of Microbiology

, Volume 57, Issue 12, pp 1079–1085 | Cite as

Flavobacterium humi sp. nov., a flexirubin-type pigment producing bacterium, isolated from soil

  • Inhyup Kim
  • Jiyoun Kim
  • Geeta Chhetri
  • Taegun SeoEmail author
Microbial Systematics and Evolutionary Microbiology
  • 35 Downloads

Abstract

A yellow pigmented, Gram-stain-negative, strictly aerobic, rod-shaped, motile by means of gliding, catalase and oxidase positive bacterium, designated strain DS2-AT, was isolated from soil. Growth was observed at 4–32°C (optimum, 28°C), pH 6–9 (optimum, 7.0), and with 0–0.25% (w/v) NaCl (optimum, 0%). Phylogenetic analysis of 16S rRNA gene sequence revealed that strain DS2-AT belonged to the genus Flavobacterium and was most closely related to Flavobacterium aquatile LMG 4008T (96.4%), Flavobacterium terrae DSM 18829T (95.6%), Flavobacterium vireti THG-SM1T (95.5%), Flavobacterium inkyongense IMCC27201T (95.4%), Flavobacterium brevivitae TTM-43T (95.2%), and Flavobacterium cucumis DSM 18830T (95.2%). Strain DS2-AT produces flexirubin-type pigments. The major fatty acids were iso-C15:0, iso-C17:0 3-OH, and iso-C15:0 3-OH. The major respiratory quinone was identified as menaquinone-6. The major polar lipid was found to be phosphatidylethanolamine. The average nucleotide identity values between strain DS2-AT and selected taxa, F. aquatile LMG 4008T, F. terrae DSM 18829T, and F. cucumis DSM 18830T, were 72, 72.7, and 71.6%, respectively. The draft genome of strain DS2-AT has a number of 14 contigs, scaffold N50 of 476,310 bp and a total size of 3,563,867 bp. Additionally, strain DS2-AT contains 3,127 of gene, 41 of tRNA, 6 of rRNA, and 3 of ncRNA. The DNA G + C content of stain DS2-AT was 40.7 mol%. Based on phylogenetic and phenotypic analyses, strain DS2-AT is considered as a novel species of the genus Flavobacterium, for which the name Flavobacterium humi sp. nov., (type strain DS2-AT = KACC 19715T = JCM 32786T) has been proposed.

Keywords

Flavobacterium humi strictly aerobic polyphasic taxonomy gliding motility flexirubin-type pigment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

We thank Prof Dr. Bernhard Schink (University of Konstanz, Konstanz, Germany) for suggesting genus and species names. This work was supported by a National Research Foundation of Korea (NRF) grant by the Korean government (MIST) (NRF-2017R1A2B4009448).

Supplementary material

12275_2019_9350_MOESM1_ESM.pdf (750 kb)
Supplementary material, approximately 952 KB.

References

  1. Ali, Z., Cousin, S., Frühling, A., Brambilla, E., Schumann, P., Yang, Y., and Stackebrandt, E. 2009. Flavobacterium rivuli sp. nov., Flavobacterium subsaxonicum sp. nov., Flavobacterium swingsii sp. nov., and Flavobacterium reichenbachii sp. nov., isolated from a hard water rivulet. Int. J. Syst. Evol. Microbiol.59, 2610–2617.PubMedCrossRefPubMedCentralGoogle Scholar
  2. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSIBLAST: a new generation of protein database search programs. Nucleic Acids Res.25, 3389–3402.PubMedPubMedCentralCrossRefGoogle Scholar
  3. Bergey, D., Harrison, F., Breed, R., Hammer, B., and Huntoon, F. 1957. Genus III. Flavobacterium. In Breed, R.S. (ed.). Bergey’s Manual of Determinative Bacteriology, pp. 309–322. Williams & Wilkins, Baltimore, USA.Google Scholar
  4. Bernardet, J.F. and Bowman, J.P. 2006. The Genus Flavobacterium. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.) The Prokaryotes. Springer, New York, NY, USA.Google Scholar
  5. Bernardet, J.F. and Bowman, J.P. 2011. Genus I. Flavobacterium. In Whitman, W. (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd edn, Vol. 4, pp. 112–154. Williams & Wilkins, Baltimore, MD, USA.Google Scholar
  6. Bernardet, J.F., Nakagawa, Y., and Holmes, B. 2002. Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int. J. Syst. Evol. Microbiol.52, 1049–1070.PubMedPubMedCentralGoogle Scholar
  7. Bernardet, J.F., Segers, P., Vancanneyt, M., Berthe, F., Kersters, K., and Vandamme, P. 1996. Cutting a Gordian knot: emended classification and description of the genus Flavobacterium description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophage aquatilis Strohl and Tait 1978). Int. J. Syst. Evol. Microbiol.46, 128–148.Google Scholar
  8. Blin, K., Shaw, S., Steinke, K., Villebro, R., Ziemert, N., Lee, S.Y., Medema, M.H., and Weber, T. 2019. antiSMASH 5.0: updates to the secondary metabolite genome mining pipeline. Nucleic Acids Res.47, 81–87.CrossRefGoogle Scholar
  9. Chaudhary, D.K. and Kim, J. 2017. Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol.67, 2211–2218.PubMedCrossRefGoogle Scholar
  10. Chen, W.M., Su, C.L., and Sheu, S.Y. 2017 Flavobacterium dispersum sp. nov., isolated from a freshwater spring. Int. J. Syst. Evol. Microbiol.67, 4416–4423.PubMedCrossRefGoogle Scholar
  11. Chhetri, G., Kim, J., Kim, I., Kim, M.K., and Seo, T. 2019. Pontibacter chitinilyticus sp. nov., a novel chitin-hydrolysing bacterium isolated from soil. Antonie van Leeuwenhoek112, 1011–1018.PubMedCrossRefPubMedCentralGoogle Scholar
  12. Chhetri, G., Yang, D., Choi, J., Kim, H., and Seo, T. 2018. Flavobacterium edaphi sp. nov., isolated from soil from Jeju Island, Korea. Arch. Microbiol.201, 539–545.PubMedCrossRefPubMedCentralGoogle Scholar
  13. Choi, J., Lee, D., Jang, J.H., Cha, S., and Seo, T. 2018. Aestuariibaculum marinum sp. nov., a marine bacterium isolated from seawater in South Korea. J. Microbiol.56, 614–618.PubMedCrossRefPubMedCentralGoogle Scholar
  14. Choi, S., Shin, S.K., Kim, E., and Yi, H. 2017. Flavobacterium crassostreae sp. nov., isolated from Pacific oyster. Int. J. Syst. Evol. Microbiol.67, 988–992.PubMedCrossRefPubMedCentralGoogle Scholar
  15. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev.45, 316–354.PubMedPubMedCentralGoogle Scholar
  16. Dong, K., Chen, F., Du, Y., and Wang, G. 2013. Flavobacterium enshiense sp. nov., isolated from soil, and emended descriptions of the genus Flavobacterium and Flavobacterium cauense, Flavobacterium saliperosum and Flavobacterium suncheonense. Int. J. Syst. Evol. Microbiol.63, 886–892.PubMedCrossRefPubMedCentralGoogle Scholar
  17. Ekwe, A.P., Ahn, J.H., and Kim, S.B. 2017. Flavobacterium keumense sp. nov, isolated from freshwater. Int. J. Syst. Evol. Microbiol.67, 2166–2170.PubMedCrossRefPubMedCentralGoogle Scholar
  18. Fautz, E. and Reichenbach, H. 1980. A simple test for flexirubin-type pigments. FEMS Microbiol. Lett.8, 87–91.CrossRefGoogle Scholar
  19. Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. Evolution39, 783–791.PubMedCrossRefPubMedCentralGoogle Scholar
  20. Feng, Q., Han, L., Nogi, Y., Hong, Q., and Lv, J. 2016. Flavobacterium lutivivi sp. nov., isolated from activated sludge. Int. J. Syst. Evol. Microbiol.66, 1394–1400.PubMedCrossRefPubMedCentralGoogle Scholar
  21. Fujii, D., Nagai, F., Watanabe, Y., and Shirasawa, Y. 2014. Flavobacterium longum sp. nov. and Flavobacterium urocaniciphilum sp. nov., isolated from a wastewater treatment plant, and emended descriptions of Flavobacterium caeni and Flavobacterium terrigena. Int. J. Syst. Evol. Microbiol.64, 1488–1494.PubMedCrossRefPubMedCentralGoogle Scholar
  22. Fu, Y., Tang, X., Lai, Q., Zhang, C., Zhong, H., Li, W., Liu, Y., Chen, L., Sun, F., and Shao, Z. 2011. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol.61, 205–209.PubMedCrossRefPubMedCentralGoogle Scholar
  23. Glaeser, S.P., Galatis, H., Martin, K., and Kämpfer, P. 2013. Flavobacterium cutihirudinis sp. nov., isolated from the skin of the medical leech Hirudo verbana. Int. J. Syst. Evol. Microbiol.63, 2841–2847.PubMedCrossRefPubMedCentralGoogle Scholar
  24. Godchaux, W. 3rd, and Leadbetter, E.R. 1983. Unusual sulfonolipids are characteristic of the Cytophaga-Flexibacter group. J. Bacteriol.153, 1238–1246.PubMedPubMedCentralGoogle Scholar
  25. Goris, J., Konstantinidis, K.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int. J. Syst. Evol. Microbiol.57, 81–91.PubMedCrossRefPubMedCentralGoogle Scholar
  26. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol.42, 457–469.CrossRefGoogle Scholar
  27. Huang, L., Zhou, J., Li, X., Peng, Q., Lu, H., and Du, Y. 2013. Characterization of a new alginate lyase from newly isolated Flavobacterium sp. S20. J. Ind. Microbiol. Biotechnol.40, 113–122.PubMedCrossRefPubMedCentralGoogle Scholar
  28. Jang, J.H., Lee, D., Cha, S., and Seo, T. 2017. Ensifer collicola sp. nov., a bacterium isolated from soil in South Korea. J. Microbiol.55, 520–524.PubMedCrossRefPubMedCentralGoogle Scholar
  29. Joung, Y., Kim, H., and Joh, K. 2013. Flavobacterium jumunjinense sp. nov., isolated from a lagoon, and emended descriptions of Flavobacterium cheniae, Flavobacterium dongtanense and Flavobacterium gelidilacus. Int. J. Syst. Evol. Microbiol.63, 3280–3286.CrossRefGoogle Scholar
  30. Kang, J.Y., Chun, J., and Jahng, K.Y. 2013. Flavobacterium aciduliphilum sp. nov., isolated from freshwater, and emended description of the genus Flavobacterium. Int. J. Syst. Evol. Microbiol.63, 1633–1638.PubMedCrossRefGoogle Scholar
  31. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol.16, 111–120.CrossRefGoogle Scholar
  32. Komagata, K. and Suzuki, K.I. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol.19, 161–205.CrossRefGoogle Scholar
  33. Kuo, I., Saw, J., Kapan, D.D., Christensen, S., and Kaneshiro, K.Y. 2013. Flavobacterium akiainvivens sp. nov., from decaying wood of Wikstroemia oahuensis, Hawai’i, and emended description of the genus Flavobacterium. Int. J. Syst. Evol. Microbiol.63, 3280–3286.PubMedCrossRefGoogle Scholar
  34. Kuykendall, L.D., Roy, M.A., O'Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Evol. Microbiol.38, 358–361.Google Scholar
  35. Lee, Y. and Jeon, C.O. 2018. Flavobacterium alvei sp. nov.isolated from a freshwater river. Int. J. Syst. Evol. Microbiol., 68, 1919–1924.Google Scholar
  36. McBride, M.J. 2004. Cytophaga-Flavobacterium gliding motility. J. Mol. Microbiol. Biotechnol.7, 63–71.PubMedCrossRefGoogle Scholar
  37. McBride, M.J., Xie, G., Martens, E.C., Lapidus, A., Henrissat, B., Rhodes, R.G., Goltsman, E., Wang, W., Xu, J., Hunnicutt, D.W., et al. 2009. Novel features of the polysaccharide-digesting gliding bacterium Flavobacterium Johnsoniae as revealed by genome sequence analysis. Appl. Environ. Microbiol.75, 6864–6875.PubMedPubMedCentralCrossRefGoogle Scholar
  38. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  39. Ngo, H.T., Kook, M., and Yi, T.H. 2015. Flavobacterium daemonensis sp. nov., isolated from Daemo Mountain soil. Int. J. Syst. Evol. Microbiol.65, 983–989.PubMedCrossRefGoogle Scholar
  40. Park, S.H., Kim, J.Y., Kim, Y.J., and Heo, M.S. 2016. Flavobacterium jejuensis sp. nov., isolated from marine brown alga Ecklonia cava. J. Microbiol.53, 756–761.CrossRefGoogle Scholar
  41. Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate highthroughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics28, 1823–1829.PubMedPubMedCentralCrossRefGoogle Scholar
  42. Reichenbach, H., Kohl, W., and Achenbach, H. 1981. The flexirubintype pigments, pp. 101–108. In Reichenbach, H. and Weeks, O.B. (eds.), The Flavobacterium-Cytophaga group. Verlag Chemie, Weinheim, Germany.Google Scholar
  43. Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA106, 19126–19131.PubMedCrossRefGoogle Scholar
  44. Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol.4, 406–425.PubMedPubMedCentralGoogle Scholar
  45. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization. In Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for General and Molecular Bacteriology, pp. 607–654. American Society for Microbiology, Washington DC, USA.Google Scholar
  46. Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res.28, 33–36.PubMedPubMedCentralCrossRefGoogle Scholar
  47. Touchon, M., Barbier, P., Bernardet, J.F., Loux, V., Vacherie, B., Barbe, V., Rocha, E.P.C., and Duchaud, E. 2011. Complete genome sequence of the fish pathogen Flavobacterium branchiophilum. Appl. Environ. Microbiol.77, 7656–7662.PubMedPubMedCentralCrossRefGoogle Scholar
  48. Venil, C.K., Zakaria, Z.A., and Ahmad, W.A. 2015. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology. Acta Biochim. Pol.62, 185–190.PubMedCrossRefPubMedCentralGoogle Scholar
  49. Weon, H.Y., Song, M.H., Son, J.A., Kim, B.Y., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2007. Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int. J. Syst. Evol. Microbiol.57, 1594–1598.PubMedCrossRefPubMedCentralGoogle Scholar
  50. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017a. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol.67, 1613–1617.PubMedPubMedCentralCrossRefGoogle Scholar
  51. Yoon, S.H., Ha, S.M., Lim, J.M., Kwon, S.J., and Chun, J. 2017b. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie van Leeuwenhoek110, 1281–1286.PubMedCrossRefPubMedCentralGoogle Scholar
  52. Zhao, J.C., Cheng, J., Zhang, Q., Gao, Z.W., Zhang, M.Y., and Zhang, Y.X. 2018. Flavobacterium artemisiae sp. nov., isolated from the rhizosphere of Artemisia annua L. and emended descriptions of Flavobacterium compostarboris and Flavobacterium procerum. Int. J. Syst. Evol. Microbiol.68, 1509–1513.PubMedCrossRefPubMedCentralGoogle Scholar
  53. Zhou, M.Y., Zhang, X.Y., Yang, X.D., Zhang, Y.J., He, H.L., and Ning, D. 2017. Flavobacterium ardleyense sp. nov., isolated from Antarctic soil. Int. J. Syst. Evol. Microbiol.67, 3996–4001.PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Inhyup Kim
    • 1
  • Jiyoun Kim
    • 1
  • Geeta Chhetri
    • 1
  • Taegun Seo
    • 1
    Email author
  1. 1.Department of Life ScienceDongguk University-SeoulGoyangRepublic of Korea

Personalised recommendations