Advertisement

Journal of Microbiology

, Volume 57, Issue 12, pp 1048–1055 | Cite as

Hahyoungchilella caricis gen. nov., sp. nov., isolated from a rhizosphere mudflat of a halophyte (Carex scabrifolia), transfer of Thioclava arenosa Thongphrom et al. 2017 to Pseudothioclava as Pseudothioclava arenosa gen. nov., comb. nov. and proposal of Thioclava electrotropha Chang et al. 2018 as a later heterosynonym of Thioclava sediminum

  • Young-Ju Kim
  • Soon Dong LeeEmail author
Microbial Systematics and Evolutionary Microbiology
  • 33 Downloads

Abstract

A Gram-stain-negative strictly aerobic, marine bacterium, designated GH2-2T, was isolated from a rhizosphere mudflat of a halophyte (Carex scabrifolia) in Gangwha Island, the Republic of Korea. The cells of the organism were oxidase-positive, catalase-positive, flagellated, short rods that grew at 10–40°C, pH 4–10, and 0–13% (w/v) NaCl. The predominant ubiquinone was Q-10. The major polar lipids were phosphatidylcholine, phosphatidylethanolamine, and phosphatidylglycerol. The major fatty acid is C18:1. Phylogenetic analysis based on 16S rRNA gene sequences revealed that the novel isolate formed an independent lineage at the base of the radiation encompassing members of the genus Thioclava, except for Thioclava arenosa. The closest relatives were T. nitratireducens (96.03% sequence similarity) and T. dalianensis (95.97%). The genome size and DNA G+C content were 3.77 Mbp and 59.6 mol%, respectively. Phylogenomic analysis supported phylogenetic distinctness based on 16S rRNA gene sequences. Average nucleotide identity values were 73.6–74.0% between the novel strain and members of the genus Thioclava. On the basis of data obtained from a polyphasic approach, the strain GH2-2T (= KCTC 62124T = DSM 105743) represents a novel species of a new genus for which the name Hahyoungchilella caricis gen. nov., sp. nov. is proposed. Moreover, the transfer of Thioclava arenosa Thongphrom et al. 2017 to Pseudothioclava gen. nov. as Pseudothioclava arenosa comb. nov. is also proposed. Finally, Thioclava electrotropha Chang et al. 2018 is proposed to be a later heterosynonym of Thioclava sediminum Liu et al. 2017.

Keywords

Hahyoungchilella caricis rhizosphere mudflat Carex scabrifolia Pseudothioclava arenosa 16S rRNA gene sequencing genome sequencing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

This research was carried out by the project for the survey and excavation of Korean indigenous species of the National Institute of Biological Resources (NIBR) under the Ministry of Environment, Korea, and through the partial support of the National Research Foundation of Korea (no. 2019015605). The authors are thankful for Dr. J. S. Lee (KCTC) for providing the type strains of T. arenosa and T. nitratireducens.

Supplementary material

12275_2019_9260_MOESM1_ESM.pdf (173 kb)
Supplementary material, approximately 176 KB.

References

  1. Brosius, J., Palmer, M.L., Kennedy, P.J., and Noller, H.F. 1978. Complete nucleotide sequence of a 16S ribosomal RNA gene from Escherichia coli. Proc. Natl. Acad. Sci. USA75, 4801–4805.CrossRefGoogle Scholar
  2. Chang, R., Bird, L., Barr, C., Osburn, M., Wilbanks, E., Nealson, K., and Rowe, A. 2018. Thioclava electrotropha sp. nov., a versatile electrode and sulfur-oxidizing bacterium from marine sediments. Int. J. Syst. Evol. Microbiol.68, 1652–1658.CrossRefGoogle Scholar
  3. Farris, J.S. 1972. Estimating phylogenetic trees from distance matrices. Am. Nat.106, 645–667.CrossRefGoogle Scholar
  4. Felsenstein J. 2002. PHYLIP (phylogeny inference package), version 3.6a. Department of Genome Sciences, University of Washington, Seattle, USA.Google Scholar
  5. Goris, J., Konstantinidis, L.T., Klappenbach, J.A., Coenye, T., Vandamme, P., and Tiedje, J.M. 2007. DNA-DNA hybridization values and their relationship to whole-genome sequence similities. Int. J. Syst. Evol. MIcrobiol.57, 81–91.CrossRefGoogle Scholar
  6. Hopwood, D.A., Bibb, M.J., Chater, K.F., Kieser, T., Bruton, C.J., Kieser, H.M., Lydiate, D.J., Smith, C.P., Ward, J.M., and Schrempf, H. 1985. Genetic Manipulation of Streptomyces: a Laboratory Manual. John Innes Foundation, Norwich, UK.Google Scholar
  7. Jukes, T.H. and Cantor, C.R. 1969. Evolution of protein molecules, pp. 21–132. In Munro, H.N. (ed.), Mammalian Protein Metabolism. Academic Press, New York, USA.Google Scholar
  8. Jung, Y.T., Kim, B.H., Oh, T.K., and Yoon, J.H. 2010. Pseudoruegeria lutimaris sp. nov., isolated from a tidal flat sediment, and emended description of the genus Pseudoruegeria. Int. J. Syst. Evol. Microbiol.60, 1177–1181.CrossRefGoogle Scholar
  9. Kim, Y.J. and Lee, S.D. 2019. Martelella lutilitoris sp. nov., isolated from a tidal mudflat. J. Microbiol. (In press).Google Scholar
  10. Kroppenstedt, R.M. 1985. Fatty acid and menaquinone analysis of actinomycetes and related organisms, pp. 173–199. In Goodfellow, M. and Minnikin, D.E. (eds.). Chemical Methods in Bacterial Systematics, Academic Press, London, UK.Google Scholar
  11. Lai, Q., Li, S., Xu, H., Jiang, L., Zhang, R., and Shio, Z. 2014. Thioclava atlantica sp. nov., isolated from deep sea sediment of the Atlantic Ocean. Antonie van Leeuwenhoek106, 919–925.CrossRefGoogle Scholar
  12. Lane, D.J. 1991. 16S/23S rRNA Sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.). Nucleic Acid Techniques in Bacterial Systematics, John Wiley and Sons, London, UK.Google Scholar
  13. Lee, S.D. 2018. Maribius pontilimi sp. nov., isolated from a tidal mudflat. Int. J. Syst. Evol. Microbiol.68, 353–357.CrossRefGoogle Scholar
  14. Lee, S.D. 2019. Martelella caricis sp. nov., isolated from a rhizosphere mudflat. Int. J. Syst. Evol. Microbiol.69, 266–270.CrossRefGoogle Scholar
  15. Lee, S.D., Kim, Y.J., and Kim, I.S. 2019a. Erythrobacter suaedae sp. nov., isolated from a rhizosphere mudflat of a halophyte (Suaeda japonica). Int. J. Syst. Evol. Microbiol. doi:  https://doi.org/10.1099/ijsem.0.003625.CrossRefGoogle Scholar
  16. Lee, S.D., Kim, Y.J., and Kim, I.S. 2019b. Rhodococcus subtropicus sp. nov., a new actinobacterium isolated from a cave. Int. J. Syst. Evol. Microbiol. doi:  https://doi.org/10.1099/ijsem.0.003601.CrossRefGoogle Scholar
  17. Lefort, V., Desper, R., and Gascuel, O. 2015. FastME 2.0: A comprehensive, accurate, and fast distance-based phylogeny inference program. Mol. Biol. Evol.32, 2798–2800.CrossRefGoogle Scholar
  18. Liu, Y., Lai, Q., Du, J., Xu, H., Jiang, L., and Shio, Z. 2015. Thioclava indica sp. nov., isolated from surface seawater of the Indian Ocean. Antonie van Leeuwenhoek107, 297–304.CrossRefGoogle Scholar
  19. Liu, Y., Lai, Q., and Shao, Z. 2017a. A multilocus sequence analysis scheme for phylogeny of Thioclava bacteria and proposal of two novel species. Front. Microbiol.8, 1322.CrossRefGoogle Scholar
  20. Liu, Y., Lai, Q., and Shao, Z. 2017b. Thioclava nitratireducens sp. nov., isolated from surface seawater. Int. J. Syst. Evol. Microbiol.67, 2109–2113.CrossRefGoogle Scholar
  21. Liu, Y., Lai, Q., Wang, W., and Shao, Z. 2017c. Defluviimonas nitratireducens sp. nov., isolated from surface seawater. Int. J. Syst. Evol. Microbiol.67, 2752–2757.CrossRefGoogle Scholar
  22. Meier-Kolthoff, J.P., Auch, A.F., Klenk, H.P., and Göker, M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics14, 60.CrossRefGoogle Scholar
  23. Meier-Kolthoff, J.P. and Göker, M. 2019. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat. Commun.10, 2182.CrossRefGoogle Scholar
  24. Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol.39, 159–167.CrossRefGoogle Scholar
  25. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods2, 233–241.CrossRefGoogle Scholar
  26. Minnikin, D.E., Patel, P.V., Alshamaony, L., and Goodfellow, M. 1977. Polar lipid composition in the classification of Nocardia and related bacteria. Int. J. Syst. Bacteriol.27, 104–117.CrossRefGoogle Scholar
  27. Richter, M. and Rosselló-Móra, R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA106, 19126–19131.CrossRefGoogle Scholar
  28. Sorokin, D.Y., Tourova, T.P., Spiridonova, E.M., Rainey, F.A., and Muyzer, G. 2005. Thioclava pacifica gen. nov., sp. nov., a novel facultatively autotrophic, marine, sulfur-oxidizing bacterium from a near-shore sulfidic hydrothermal area. Int. J. Syst. Evol. Microbiol.55, 1069–1075.CrossRefGoogle Scholar
  29. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The Clustal_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res.24, 4876–4882.CrossRefGoogle Scholar
  30. Thongphrom, C., Kim, J.H., Bora, N., and Kim, W. 2017. Thioclava arenosa sp. nov., isolated from sea sand. Int. J. Syst. Evol. Microbiol.67, 1735–1739.CrossRefGoogle Scholar
  31. Zhang, R., Lai, Q., Wang, W., Li, S., and Shao, Z. 2013. Thioclava dalianensis sp. nov., isolated from surface sea water. Int. J. Syst. Evol. Microbiol.63, 2981–2985.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.Ilseong Landscaping Co., Ltd.JejuRepublic of Korea
  2. 2.Faculty of Science EducationJeju National UniversityJejuRepublic of Korea

Personalised recommendations